These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22473573)

  • 1. Recent advances in solar cells based on one-dimensional nanostructure arrays.
    Yu M; Long YZ; Sun B; Fan Z
    Nanoscale; 2012 Apr; 4(9):2783-96. PubMed ID: 22473573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells.
    Poudel P; Qiao Q
    Nanoscale; 2012 Apr; 4(9):2826-38. PubMed ID: 22447033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in solid-state dye-sensitized solar cells.
    Yum JH; Chen P; Grätzel M; Nazeeruddin MK
    ChemSusChem; 2008; 1(8-9):699-707. PubMed ID: 18686289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.
    Wong WY; Ho CL
    Acc Chem Res; 2010 Sep; 43(9):1246-56. PubMed ID: 20608673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis.
    Xiao FX; Miao J; Tao HB; Hung SF; Wang HY; Yang HB; Chen J; Chen R; Liu B
    Small; 2015 May; 11(18):2115-31. PubMed ID: 25641821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities.
    Odobel F; Le Pleux L; Pellegrin Y; Blart E
    Acc Chem Res; 2010 Aug; 43(8):1063-71. PubMed ID: 20455541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells.
    Liao JY; Lei BX; Wang YF; Liu JM; Su CY; Kuang DB
    Chemistry; 2011 Jan; 17(4):1352-7. PubMed ID: 21243703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional a-Si:H solar cells on glass nanocone arrays patterned by self-assembled Sn nanospheres.
    Kim J; Hong AJ; Nah JW; Shin B; Ross FM; Sadana DK
    ACS Nano; 2012 Jan; 6(1):265-71. PubMed ID: 22148324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell.
    Nair AS; Jose R; Shengyuan Y; Ramakrishna S
    J Colloid Interface Sci; 2011 Jan; 353(1):39-45. PubMed ID: 20934187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid nanostructure of platinum-nanoparticles/graphitic-nanofibers as a three-dimensional counter electrode in dye-sensitized solar cells.
    Hsieh CK; Tsai MC; Su CY; Wei SY; Yen MY; Ma CC; Chen FR; Tsai CH
    Chem Commun (Camb); 2011 Nov; 47(41):11528-30. PubMed ID: 21952551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film.
    Dai G; Zhao L; Li J; Wan L; Hu F; Xu Z; Dong B; Lu H; Wang S; Yu J
    J Colloid Interface Sci; 2012 Jan; 365(1):46-52. PubMed ID: 21962431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterials for renewable energy production and storage.
    Chen X; Li C; Grätzel M; Kostecki R; Mao SS
    Chem Soc Rev; 2012 Dec; 41(23):7909-37. PubMed ID: 22990530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanostructures for solar energy conversion schemes.
    Guldi DM; Sgobba V
    Chem Commun (Camb); 2011 Jan; 47(2):606-10. PubMed ID: 20871887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the hard templating method for the synthesis of metal-conducting polymer multi-segmented nanowires.
    Callegari V; Demoustier-Champagne S
    Macromol Rapid Commun; 2011 Jan; 32(1):25-34. PubMed ID: 21432967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlating titania morphology and chemical composition with dye-sensitized solar cell performance.
    Santulli AC; Koenigsmann C; Tiano AL; DeRosa D; Wong SS
    Nanotechnology; 2011 Jun; 22(24):245402. PubMed ID: 21508451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials.
    Zhang X; Thavasi V; Mhaisalkar SG; Ramakrishna S
    Nanoscale; 2012 Mar; 4(5):1707-16. PubMed ID: 22315140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.