These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22473825)

  • 1. Controlling trisulfide modification in recombinant monoclonal antibody produced in fed-batch cell culture.
    Kshirsagar R; McElearney K; Gilbert A; Sinacore M; Ryll T
    Biotechnol Bioeng; 2012 Oct; 109(10):2523-32. PubMed ID: 22473825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient on-column conversion of IgG1 trisulfide linkages to native disulfides in tandem with Protein A affinity chromatography.
    Aono H; Wen D; Zang L; Houde D; Pepinsky RB; Evans DR
    J Chromatogr A; 2010 Aug; 1217(32):5225-32. PubMed ID: 20598700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of trisulfide modification in antibodies.
    Gu S; Wen D; Weinreb PH; Sun Y; Zhang L; Foley SF; Kshirsagar R; Evans D; Mi S; Meier W; Pepinsky RB
    Anal Biochem; 2010 May; 400(1):89-98. PubMed ID: 20085742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Cysteinylation and Trisulfide Bonds in a Recombinant Monoclonal Antibody.
    Kita A; Ponniah G; Nowak C; Liu H
    Anal Chem; 2016 May; 88(10):5430-7. PubMed ID: 27115984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for trisulfide bonds in a recombinant variant of a human IgG2 monoclonal antibody.
    Pristatsky P; Cohen SL; Krantz D; Acevedo J; Ionescu R; Vlasak J
    Anal Chem; 2009 Aug; 81(15):6148-55. PubMed ID: 19591437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing.
    Trexler-Schmidt M; Sargis S; Chiu J; Sze-Khoo S; Mun M; Kao YH; Laird MW
    Biotechnol Bioeng; 2010 Jun; 106(3):452-61. PubMed ID: 20178122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells.
    Legmann R; Schreyer HB; Combs RG; McCormick EL; Russo AP; Rodgers ST
    Biotechnol Bioeng; 2009 Dec; 104(6):1107-20. PubMed ID: 19623562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Step-up/step-down perfusion approach for increased mAb 520C9 production by a hybridoma cell line.
    Sen S; Roychoudhury PK
    Biotechnol Lett; 2013 Feb; 35(2):153-63. PubMed ID: 23086570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trisulfide modification impacts the reduction step in antibody-drug conjugation process.
    Cumnock K; Tully T; Cornell C; Hutchinson M; Gorrell J; Skidmore K; Chen Y; Jacobson F
    Bioconjug Chem; 2013 Jul; 24(7):1154-60. PubMed ID: 23713462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culture temperature modulates aggregation of recombinant antibody in cho cells.
    Gomez N; Subramanian J; Ouyang J; Nguyen MD; Hutchinson M; Sharma VK; Lin AA; Yuk IH
    Biotechnol Bioeng; 2012 Jan; 109(1):125-36. PubMed ID: 21965146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer.
    McLeod J; O'Callaghan PM; Pybus LP; Wilkinson SJ; Root T; Racher AJ; James DC
    Biotechnol Bioeng; 2011 Sep; 108(9):2193-204. PubMed ID: 21445882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel modification to monoclonal antibodies: thioether cross-link of heavy and light chains.
    Tous GI; Wei Z; Feng J; Bilbulian S; Bowen S; Smith J; Strouse R; McGeehan P; Casas-Finet J; Schenerman MA
    Anal Chem; 2005 May; 77(9):2675-82. PubMed ID: 15859580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of S-sulfocysteine on fragments and trisulfide bond linkages in monoclonal antibodies.
    Seibel R; Maier S; Schnellbaecher A; Bohl S; Wehsling M; Zeck A; Zimmer A
    MAbs; 2017; 9(6):889-897. PubMed ID: 28581887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24.
    Müthing J; Kemminer SE; Conradt HS; Sagi D; Nimtz M; Kärst U; Peter-Katalinić J
    Biotechnol Bioeng; 2003 Aug; 83(3):321-34. PubMed ID: 12783488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture.
    Chong WP; Goh LT; Reddy SG; Yusufi FN; Lee DY; Wong NS; Heng CK; Yap MG; Ho YS
    Rapid Commun Mass Spectrom; 2009 Dec; 23(23):3763-71. PubMed ID: 19902412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development toward rapid and efficient screening for high performance hydrolysate lots in a recombinant monoclonal antibody manufacturing process.
    Luo Y; Pierce KM
    Biotechnol Prog; 2012 Jul; 28(4):1061-8. PubMed ID: 22641483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system.
    Tang YJ; Ohashi R; Hamel JF
    Biotechnol Prog; 2007; 23(1):255-64. PubMed ID: 17269696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies in serum support rapid formation of disulfide bond between unpaired cysteine residues in the VH domain of an immunoglobulin G1 molecule.
    Ouellette D; Alessandri L; Chin A; Grinnell C; Tarcsa E; Radziejewski C; Correia I
    Anal Biochem; 2010 Feb; 397(1):37-47. PubMed ID: 19766583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies.
    Sauer PW; Burky JE; Wesson MC; Sternard HD; Qu L
    Biotechnol Bioeng; 2000 Mar; 67(5):585-97. PubMed ID: 10649233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells.
    Schlatter S; Stansfield SH; Dinnis DM; Racher AJ; Birch JR; James DC
    Biotechnol Prog; 2005; 21(1):122-33. PubMed ID: 15903249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.