These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 22474356)

  • 1. De novo design of synthetic prion domains.
    Toombs JA; Petri M; Paul KR; Kan GY; Ben-Hur A; Ross ED
    Proc Natl Acad Sci U S A; 2012 Apr; 109(17):6519-24. PubMed ID: 22474356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating new prions by targeted mutation or segment duplication.
    Paul KR; Hendrich CG; Waechter A; Harman MR; Ross ED
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8584-9. PubMed ID: 26100899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains.
    Shattuck JE; Waechter AC; Ross ED
    Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains.
    Espinosa Angarica V; Ventura S; Sancho J
    BMC Genomics; 2013 May; 14():316. PubMed ID: 23663289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing prion propensity by hydrophobic insertion.
    Gonzalez Nelson AC; Paul KR; Petri M; Flores N; Rogge RA; Cascarina SM; Ross ED
    PLoS One; 2014; 9(2):e89286. PubMed ID: 24586661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What makes a protein sequence a prion?
    Sabate R; Rousseau F; Schymkowitz J; Ventura S
    PLoS Comput Biol; 2015 Jan; 11(1):e1004013. PubMed ID: 25569335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compositional determinants of prion formation in yeast.
    Toombs JA; McCarty BR; Ross ED
    Mol Cell Biol; 2010 Jan; 30(1):319-32. PubMed ID: 19884345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions.
    Michelitsch MD; Weissman JS
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11910-5. PubMed ID: 11050225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of amino acid composition on yeast prion formation and prion domain interactions.
    Ross ED; Toombs JA
    Prion; 2010; 4(2):60-5. PubMed ID: 20495349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling the prion propensity of glutamine/asparagine-rich proteins.
    Paul KR; Ross ED
    Prion; 2015; 9(5):347-54. PubMed ID: 26555096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence and evolution of yeast prion and prion-like proteins.
    An L; Fitzpatrick D; Harrison PM
    BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.
    Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S
    Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast.
    MacLea KS; Paul KR; Ben-Musa Z; Waechter A; Shattuck JE; Gruca M; Ross ED
    Mol Cell Biol; 2015 Mar; 35(5):899-911. PubMed ID: 25547291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid composition predicts prion activity.
    Afsar Minhas FUA; Ross ED; Ben-Hur A
    PLoS Comput Biol; 2017 Apr; 13(4):e1005465. PubMed ID: 28394888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloid cores in prion domains: Key regulators for prion conformational conversion.
    Fernández MR; Batlle C; Gil-García M; Ventura S
    Prion; 2017 Jan; 11(1):31-39. PubMed ID: 28281928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the aggregation propensity of prion sequences.
    Espargaró A; Busquets MA; Estelrich J; Sabate R
    Virus Res; 2015 Sep; 207():127-35. PubMed ID: 25747492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of polyglutamine toxicity by the yeast Sup35 prion domain in Drosophila.
    Li LB; Xu K; Bonini NM
    J Biol Chem; 2007 Dec; 282(52):37694-701. PubMed ID: 17956866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloids of shuffled prion domains that form prions have a parallel in-register beta-sheet structure.
    Shewmaker F; Ross ED; Tycko R; Wickner RB
    Biochemistry; 2008 Apr; 47(13):4000-7. PubMed ID: 18324784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence features governing aggregation or degradation of prion-like proteins.
    Cascarina SM; Paul KR; Machihara S; Ross ED
    PLoS Genet; 2018 Jul; 14(7):e1007517. PubMed ID: 30005071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.