These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22474377)

  • 1. Correlated neural variability in persistent state networks.
    Polk A; Litwin-Kumar A; Doiron B
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6295-300. PubMed ID: 22474377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trial-to-Trial Variability of Spiking Delay Activity in Prefrontal Cortex Constrains Burst-Coding Models of Working Memory.
    Li D; Constantinidis C; Murray JD
    J Neurosci; 2021 Oct; 41(43):8928-8945. PubMed ID: 34551937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing working memory with heterogeneity of recurrent cortical excitation.
    Kilpatrick ZP; Ermentrout B; Doiron B
    J Neurosci; 2013 Nov; 33(48):18999-9011. PubMed ID: 24285904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional Bistability, a Generic Cellular Mnemonic Mechanism for Robust and Flexible Working Memory Computations.
    Rodriguez G; Sarazin M; Clemente A; Holden S; Paz JT; Delord B
    J Neurosci; 2018 May; 38(22):5209-5219. PubMed ID: 29712783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory.
    Zylberberg J; Strowbridge BW
    Annu Rev Neurosci; 2017 Jul; 40():603-627. PubMed ID: 28772102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spiking network model of short-term active memory.
    Zipser D; Kehoe B; Littlewort G; Fuster J
    J Neurosci; 1993 Aug; 13(8):3406-20. PubMed ID: 8340815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic transitions into silence cause noise correlations in cortical circuits.
    Mochol G; Hermoso-Mendizabal A; Sakata S; Harris KD; de la Rocha J
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3529-34. PubMed ID: 25739962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational and in vitro studies of persistent activity: edging towards cellular and synaptic mechanisms of working memory.
    Compte A
    Neuroscience; 2006 Apr; 139(1):135-51. PubMed ID: 16337341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Background-activity-dependent properties of a network model for working memory that incorporates cellular bistability.
    Fall CP; Lewis TJ; Rinzel J
    Biol Cybern; 2005 Aug; 93(2):109-18. PubMed ID: 15806392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term plasticity explains irregular persistent activity in working memory tasks.
    Hansel D; Mato G
    J Neurosci; 2013 Jan; 33(1):133-49. PubMed ID: 23283328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction and modulation of persistent activity in a layer V PFC microcircuit model.
    Papoutsi A; Sidiropoulou K; Cutsuridis V; Poirazi P
    Front Neural Circuits; 2013; 7():161. PubMed ID: 24130519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State.
    Sarazin MXB; Victor J; Medernach D; Naudé J; Delord B
    Front Neural Circuits; 2021; 15():648538. PubMed ID: 34305535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow dynamics and high variability in balanced cortical networks with clustered connections.
    Litwin-Kumar A; Doiron B
    Nat Neurosci; 2012 Nov; 15(11):1498-505. PubMed ID: 23001062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between neural spike trains increases with firing rate.
    de la Rocha J; Doiron B; Shea-Brown E; Josić K; Reyes A
    Nature; 2007 Aug; 448(7155):802-6. PubMed ID: 17700699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serial correlation in neural spike trains: experimental evidence, stochastic modeling, and single neuron variability.
    Farkhooi F; Strube-Bloss MF; Nawrot MP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021905. PubMed ID: 19391776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurocomputational models of working memory.
    Durstewitz D; Seamans JK; Sejnowski TJ
    Nat Neurosci; 2000 Nov; 3 Suppl():1184-91. PubMed ID: 11127836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transitions between asynchronous and synchronous states: a theory of correlations in small neural circuits.
    Fasoli D; Cattani A; Panzeri S
    J Comput Neurosci; 2018 Feb; 44(1):25-43. PubMed ID: 29124505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spatial structure of correlated neuronal variability.
    Rosenbaum R; Smith MA; Kohn A; Rubin JE; Doiron B
    Nat Neurosci; 2017 Jan; 20(1):107-114. PubMed ID: 27798630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.