These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 22475000)
1. Identifying new lignin bioengineering targets: impact of epicatechin, quercetin glycoside, and gallate derivatives on the lignification and fermentation of maize cell walls. Grabber JH; Ress D; Ralph J J Agric Food Chem; 2012 May; 60(20):5152-60. PubMed ID: 22475000 [TBL] [Abstract][Full Text] [Related]
2. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability. Grabber JH; Schatz PF; Kim H; Lu F; Ralph J BMC Plant Biol; 2010 Jun; 10():114. PubMed ID: 20565789 [TBL] [Abstract][Full Text] [Related]
3. Hydroxycinnamate conjugates as potential monolignol replacements: in vitro lignification and cell wall studies with rosmarinic acid. Tobimatsu Y; Elumalai S; Grabber JH; Davidson CL; Pan X; Ralph J ChemSusChem; 2012 Apr; 5(4):676-86. PubMed ID: 22359379 [TBL] [Abstract][Full Text] [Related]
4. Apoplastic pH and monolignol addition rate effects on lignin formation and cell wall degradability in maize. Grabber JH; Hatfield RD; Ralph J J Agric Food Chem; 2003 Aug; 51(17):4984-9. PubMed ID: 12903957 [TBL] [Abstract][Full Text] [Related]
5. Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Grabber JH; Davidson C; Tobimatsu Y; Kim H; Lu F; Zhu Y; Opietnik M; Santoro N; Foster CE; Yue F; Ress D; Pan X; Ralph J Plant Sci; 2019 Oct; 287():110070. PubMed ID: 31481197 [TBL] [Abstract][Full Text] [Related]
6. Model studies of lignified fiber fermentation by human fecal microbiota and its impact on heterocyclic aromatic amine adsorption. Funk C; Braune A; Grabber JH; Steinhart H; Bunzel M Mutat Res; 2007 Nov; 624(1-2):41-8. PubMed ID: 17475287 [TBL] [Abstract][Full Text] [Related]
7. Tricin, a flavonoid monomer in monocot lignification. Lan W; Lu F; Regner M; Zhu Y; Rencoret J; Ralph SA; Zakai UI; Morreel K; Boerjan W; Ralph J Plant Physiol; 2015 Apr; 167(4):1284-95. PubMed ID: 25667313 [TBL] [Abstract][Full Text] [Related]
8. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures. Mélida H; Largo-Gosens A; Novo-Uzal E; Santiago R; Pomar F; García P; García-Angulo P; Acebes JL; Álvarez J; Encina A J Integr Plant Biol; 2015 Apr; 57(4):357-72. PubMed ID: 25735403 [TBL] [Abstract][Full Text] [Related]
9. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Salucci M; Stivala LA; Maiani G; Bugianesi R; Vannini V Br J Cancer; 2002 May; 86(10):1645-51. PubMed ID: 12085217 [TBL] [Abstract][Full Text] [Related]
10. Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls. Elumalai S; Tobimatsu Y; Grabber JH; Pan X; Ralph J Biotechnol Biofuels; 2012 Aug; 5(1):59. PubMed ID: 22889353 [TBL] [Abstract][Full Text] [Related]
11. Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Grabber JH; Hatfield RD; Lu F; Ralph J Biomacromolecules; 2008 Sep; 9(9):2510-6. PubMed ID: 18712922 [TBL] [Abstract][Full Text] [Related]
12. Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses. Grabber JH; Ralph J; Hatfield RD J Agric Food Chem; 2002 Oct; 50(21):6008-16. PubMed ID: 12358473 [TBL] [Abstract][Full Text] [Related]
13. Formation of syringyl-rich lignins in maize as influenced by feruloylated xylans and p-coumaroylated monolignols. Grabber JH; Lu F Planta; 2007 Aug; 226(3):741-51. PubMed ID: 17457604 [TBL] [Abstract][Full Text] [Related]
14. Influence of lignification and feruloylation of maize cell walls on the adsorption of heterocyclic aromatic amines. Funk C; Weber P; Thilker J; Grabber JH; Steinhart H; Bunzel M J Agric Food Chem; 2006 Mar; 54(5):1860-7. PubMed ID: 16506845 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. Dueñas M; González-Manzano S; González-Paramás A; Santos-Buelga C J Pharm Biomed Anal; 2010 Jan; 51(2):443-9. PubMed ID: 19442472 [TBL] [Abstract][Full Text] [Related]
16. Glucuronidation of the green tea catechins, (-)-epigallocatechin-3-gallate and (-)-epicatechin-3-gallate, by rat hepatic and intestinal microsomes. Crespy V; Nancoz N; Oliveira M; Hau J; Courtet-Compondu MC; Williamson G Free Radic Res; 2004 Sep; 38(9):1025-31. PubMed ID: 15621722 [TBL] [Abstract][Full Text] [Related]
17. Modifying crops to increase cell wall digestibility. Jung HJ; Samac DA; Sarath G Plant Sci; 2012 Apr; 185-186():65-77. PubMed ID: 22325867 [TBL] [Abstract][Full Text] [Related]
18. Maize Tricin-Oligolignol Metabolites and Their Implications for Monocot Lignification. Lan W; Morreel K; Lu F; Rencoret J; Carlos Del Río J; Voorend W; Vermerris W; Boerjan W; Ralph J Plant Physiol; 2016 Jun; 171(2):810-20. PubMed ID: 27208246 [TBL] [Abstract][Full Text] [Related]