BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22475023)

  • 21. Free radical damage and oxidative stress in Huntington's disease.
    Borlongan CV; Kanning K; Poulos SG; Freeman TB; Cahill DW; Sanberg PR
    J Fla Med Assoc; 1996 May; 83(5):335-41. PubMed ID: 8666972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it.
    Fahn S; Cohen G
    Ann Neurol; 1992 Dec; 32(6):804-12. PubMed ID: 1471873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TRPV1 expression and activity during retinoic acid-induced neuronal differentiation.
    El Andaloussi-Lilja J; Lundqvist J; Forsby A
    Neurochem Int; 2009 Dec; 55(8):768-74. PubMed ID: 19651168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative stress and mitochondrial dysfunctions are early events in narciclasine-induced programmed cell death in tobacco Bright Yellow-2 cells.
    Lu H; Wan Q; Wang H; Na X; Wang X; Bi Y
    Physiol Plant; 2012 Jan; 144(1):48-58. PubMed ID: 21916896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of MAO-B inhibition against ischemia-induced oxidative stress in the rat brain. Comparison with a rational antioxidant.
    Seif-El-Nasr M; Atia AS; Abdelsalam RM
    Arzneimittelforschung; 2008; 58(4):160-7. PubMed ID: 18540477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of TRP channels in oxidative stress.
    Groschner K; Rosker C; Lukas M
    Novartis Found Symp; 2004; 258():222-30; discussion 231-5, 263-6. PubMed ID: 15104185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis.
    Freestone PS; Chung KK; Guatteo E; Mercuri NB; Nicholson LF; Lipski J
    Eur J Neurosci; 2009 Nov; 30(10):1849-59. PubMed ID: 19912331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative-induced membrane damage in diabetes lymphocytes: effects on intracellular Ca(2 +) homeostasis.
    Belia S; Santilli F; Beccafico S; De Feudis L; Morabito C; Davi G; Fanò G; Mariggiò MA
    Free Radic Res; 2009 Feb; 43(2):138-48. PubMed ID: 19115119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TRP channels: molecular diversity and physiological function.
    Nishida M; Hara Y; Yoshida T; Inoue R; Mori Y
    Microcirculation; 2006; 13(7):535-50. PubMed ID: 16990213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alpha-tocopherol-mediated long-lasting protection against oxidative damage involves an attenuation of calcium entry through TRP-like channels in cultured hippocampal neurons.
    Crouzin N; de Jesus Ferreira MC; Cohen-Solal C; Aimar RF; Vignes M; Guiramand J
    Free Radic Biol Med; 2007 May; 42(9):1326-37. PubMed ID: 17395006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterisation of recombinant rat TRPM2 and a TRPM2-like conductance in cultured rat striatal neurones.
    Hill K; Tigue NJ; Kelsell RE; Benham CD; McNulty S; Schaefer M; Randall AD
    Neuropharmacology; 2006 Jan; 50(1):89-97. PubMed ID: 16260005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amantadine Attenuated Hypoxia-Induced Mitochondrial Oxidative Neurotoxicity, Apoptosis, and Inflammation via the Inhibition of TRPM2 and TRPV4 Channels.
    Öcal Ö; Coşar A; Nazıroğlu M
    Mol Neurobiol; 2022 Jun; 59(6):3703-3720. PubMed ID: 35366734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron as a vulnerability factor in nigrostriatal degeneration in aging and Parkinson's disease.
    Floor E
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):709-20. PubMed ID: 10875434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor.
    Kannan R; Jin M; Gamulescu MA; Hinton DR
    Free Radic Biol Med; 2004 Jul; 37(2):166-75. PubMed ID: 15203188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system.
    Reiter RJ; Acuña-Castroviejo D; Tan DX; Burkhardt S
    Ann N Y Acad Sci; 2001 Jun; 939():200-15. PubMed ID: 11462772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction among the vacuole, the mitochondria, and the oxidative stress response is governed by the transient receptor potential channel in Candida albicans.
    Yu Q; Zhang B; Yang B; Chen J; Wang H; Jia C; Ding X; Xu N; Dong Y; Zhang B; Xing L; Li M
    Free Radic Biol Med; 2014 Dec; 77():152-67. PubMed ID: 25308698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calorie restriction protects against apoptosis, mitochondrial oxidative stress and increased calcium signaling through inhibition of TRPV1 channel in the hippocampus and dorsal root ganglion of rats.
    Gültekin F; Nazıroğlu M; Savaş HB; Çiğ B
    Metab Brain Dis; 2018 Oct; 33(5):1761-1774. PubMed ID: 30014177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long term exposure to cell phone frequencies (900 and 1800 MHz) induces apoptosis, mitochondrial oxidative stress and TRPV1 channel activation in the hippocampus and dorsal root ganglion of rats.
    Ertilav K; Uslusoy F; Ataizi S; Nazıroğlu M
    Metab Brain Dis; 2018 Jun; 33(3):753-763. PubMed ID: 29332300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox regulation of transient receptor potential channels.
    Kozai D; Ogawa N; Mori Y
    Antioxid Redox Signal; 2014 Aug; 21(6):971-86. PubMed ID: 24161127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.