These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22475051)

  • 1. Radical coupling reactions in lignin synthesis: a density functional theory study.
    Sangha AK; Parks JM; Standaert RF; Ziebell A; Davis M; Smith JC
    J Phys Chem B; 2012 Apr; 116(16):4760-8. PubMed ID: 22475051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical coupling reactions of piceatannol and monolignols: A density functional theory study.
    Elder T; Carlos Del Río J; Ralph J; Rencoret J; Kim H; Beckham GT
    Phytochemistry; 2019 Aug; 164():12-23. PubMed ID: 31060026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of potential reaction mechanisms leading to the formation of coniferyl alcohol α-linkages in lignin: a density functional theory study.
    Watts HD; Mohamed MN; Kubicki JD
    Phys Chem Chem Phys; 2011 Dec; 13(47):20974-85. PubMed ID: 22009017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of weak interactions in lignin polymerization.
    Sánchez-González Á; Martín-Martínez FJ; Dobado JA
    J Mol Model; 2017 Mar; 23(3):80. PubMed ID: 28210878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical Coupling Reactions of Hydroxystilbene Glucosides and Coniferyl Alcohol: A Density Functional Theory Study.
    Elder T; Rencoret J; Del Río JC; Kim H; Ralph J
    Front Plant Sci; 2021; 12():642848. PubMed ID: 33737945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A potential role for sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation.
    Hatfield R; Ralph J; Grabber JH
    Planta; 2008 Nov; 228(6):919-28. PubMed ID: 18654797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis.
    Gang DR; Costa MA; Fujita M; Dinkova-Kostova AT; Wang HB; Burlat V; Martin W; Sarkanen S; Davin LB; Lewis NG
    Chem Biol; 1999 Mar; 6(3):143-51. PubMed ID: 10074466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of grass-specific enzyme that acylates monolignols with p-coumarate.
    Withers S; Lu F; Kim H; Zhu Y; Ralph J; Wilkerson CG
    J Biol Chem; 2012 Mar; 287(11):8347-55. PubMed ID: 22267741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tricin, a flavonoid monomer in monocot lignification.
    Lan W; Lu F; Regner M; Zhu Y; Rencoret J; Ralph SA; Zakai UI; Morreel K; Boerjan W; Ralph J
    Plant Physiol; 2015 Apr; 167(4):1284-95. PubMed ID: 25667313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.
    Ohashi Y; Uno Y; Amirta R; Watanabe T; Honda Y; Watanabe T
    Org Biomol Chem; 2011 Apr; 9(7):2481-91. PubMed ID: 21327224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains.
    Bunzel M; Ralph J; Lu F; Hatfield RD; Steinhart H
    J Agric Food Chem; 2004 Oct; 52(21):6496-502. PubMed ID: 15479013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds.
    Cho DW; Parthasarathi R; Pimentel AS; Maestas GD; Park HJ; Yoon UC; Dunaway-Mariano D; Gnanakaran S; Langan P; Mariano PS
    J Org Chem; 2010 Oct; 75(19):6549-62. PubMed ID: 20831160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferulate-coniferyl alcohol cross-coupled products formed by radical coupling reactions.
    Zhang A; Lu F; Sun R; Ralph J
    Planta; 2009 Apr; 229(5):1099-108. PubMed ID: 19234718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of new 5-linked pinoresinol lignin models.
    Yue F; Lu F; Sun R; Ralph J
    Chemistry; 2012 Dec; 18(51):16402-10. PubMed ID: 23109283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory study on the coupling and reactions of diferuloylputrescine as a lignin monomer.
    Elder T; Del Río JC; Ralph J; Rencoret J; Kim H
    Phytochemistry; 2022 May; 197():113122. PubMed ID: 35131641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical factors that control lignin polymerization.
    Sangha AK; Davison BH; Standaert RF; Davis MF; Smith JC; Parks JM
    J Phys Chem B; 2014 Jan; 118(1):164-70. PubMed ID: 24341896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin primary structures and dirigent sites.
    Davin LB; Lewis NG
    Curr Opin Biotechnol; 2005 Aug; 16(4):407-15. PubMed ID: 16023847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the action of chlorine radical: from lab to environment.
    Croft AK; Howard-Jones HM; Skates CE; Wood CC
    Org Biomol Chem; 2011 Nov; 9(21):7439-47. PubMed ID: 21904724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles.
    Dima O; Morreel K; Vanholme B; Kim H; Ralph J; Boerjan W
    Plant Cell; 2015 Mar; 27(3):695-710. PubMed ID: 25700483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical formation and coupling of hydroxycinnamic acids containing 1,2-dihydroxy substituents.
    Russell WR; Burkitt MJ; Scobbie L; Chesson A
    Bioorg Chem; 2003 Jun; 31(3):206-15. PubMed ID: 12818230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.