BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22475051)

  • 1. Radical coupling reactions in lignin synthesis: a density functional theory study.
    Sangha AK; Parks JM; Standaert RF; Ziebell A; Davis M; Smith JC
    J Phys Chem B; 2012 Apr; 116(16):4760-8. PubMed ID: 22475051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical coupling reactions of piceatannol and monolignols: A density functional theory study.
    Elder T; Carlos Del Río J; Ralph J; Rencoret J; Kim H; Beckham GT
    Phytochemistry; 2019 Aug; 164():12-23. PubMed ID: 31060026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of potential reaction mechanisms leading to the formation of coniferyl alcohol α-linkages in lignin: a density functional theory study.
    Watts HD; Mohamed MN; Kubicki JD
    Phys Chem Chem Phys; 2011 Dec; 13(47):20974-85. PubMed ID: 22009017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of weak interactions in lignin polymerization.
    Sánchez-González Á; Martín-Martínez FJ; Dobado JA
    J Mol Model; 2017 Mar; 23(3):80. PubMed ID: 28210878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical Coupling Reactions of Hydroxystilbene Glucosides and Coniferyl Alcohol: A Density Functional Theory Study.
    Elder T; Rencoret J; Del Río JC; Kim H; Ralph J
    Front Plant Sci; 2021; 12():642848. PubMed ID: 33737945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A potential role for sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation.
    Hatfield R; Ralph J; Grabber JH
    Planta; 2008 Nov; 228(6):919-28. PubMed ID: 18654797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis.
    Gang DR; Costa MA; Fujita M; Dinkova-Kostova AT; Wang HB; Burlat V; Martin W; Sarkanen S; Davin LB; Lewis NG
    Chem Biol; 1999 Mar; 6(3):143-51. PubMed ID: 10074466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of grass-specific enzyme that acylates monolignols with p-coumarate.
    Withers S; Lu F; Kim H; Zhu Y; Ralph J; Wilkerson CG
    J Biol Chem; 2012 Mar; 287(11):8347-55. PubMed ID: 22267741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tricin, a flavonoid monomer in monocot lignification.
    Lan W; Lu F; Regner M; Zhu Y; Rencoret J; Ralph SA; Zakai UI; Morreel K; Boerjan W; Ralph J
    Plant Physiol; 2015 Apr; 167(4):1284-95. PubMed ID: 25667313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.
    Ohashi Y; Uno Y; Amirta R; Watanabe T; Honda Y; Watanabe T
    Org Biomol Chem; 2011 Apr; 9(7):2481-91. PubMed ID: 21327224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains.
    Bunzel M; Ralph J; Lu F; Hatfield RD; Steinhart H
    J Agric Food Chem; 2004 Oct; 52(21):6496-502. PubMed ID: 15479013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds.
    Cho DW; Parthasarathi R; Pimentel AS; Maestas GD; Park HJ; Yoon UC; Dunaway-Mariano D; Gnanakaran S; Langan P; Mariano PS
    J Org Chem; 2010 Oct; 75(19):6549-62. PubMed ID: 20831160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferulate-coniferyl alcohol cross-coupled products formed by radical coupling reactions.
    Zhang A; Lu F; Sun R; Ralph J
    Planta; 2009 Apr; 229(5):1099-108. PubMed ID: 19234718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of new 5-linked pinoresinol lignin models.
    Yue F; Lu F; Sun R; Ralph J
    Chemistry; 2012 Dec; 18(51):16402-10. PubMed ID: 23109283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory study on the coupling and reactions of diferuloylputrescine as a lignin monomer.
    Elder T; Del Río JC; Ralph J; Rencoret J; Kim H
    Phytochemistry; 2022 May; 197():113122. PubMed ID: 35131641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical factors that control lignin polymerization.
    Sangha AK; Davison BH; Standaert RF; Davis MF; Smith JC; Parks JM
    J Phys Chem B; 2014 Jan; 118(1):164-70. PubMed ID: 24341896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin primary structures and dirigent sites.
    Davin LB; Lewis NG
    Curr Opin Biotechnol; 2005 Aug; 16(4):407-15. PubMed ID: 16023847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the action of chlorine radical: from lab to environment.
    Croft AK; Howard-Jones HM; Skates CE; Wood CC
    Org Biomol Chem; 2011 Nov; 9(21):7439-47. PubMed ID: 21904724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles.
    Dima O; Morreel K; Vanholme B; Kim H; Ralph J; Boerjan W
    Plant Cell; 2015 Mar; 27(3):695-710. PubMed ID: 25700483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical formation and coupling of hydroxycinnamic acids containing 1,2-dihydroxy substituents.
    Russell WR; Burkitt MJ; Scobbie L; Chesson A
    Bioorg Chem; 2003 Jun; 31(3):206-15. PubMed ID: 12818230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.