These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 22475051)
21. Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage. Sasaki S; Nishida T; Tsutsumi Y; Kondo R FEBS Lett; 2004 Mar; 562(1-3):197-201. PubMed ID: 15044025 [TBL] [Abstract][Full Text] [Related]
22. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Alejandro S; Lee Y; Tohge T; Sudre D; Osorio S; Park J; Bovet L; Lee Y; Geldner N; Fernie AR; Martinoia E Curr Biol; 2012 Jul; 22(13):1207-12. PubMed ID: 22704988 [TBL] [Abstract][Full Text] [Related]
23. Peroxidases Bound to the Growing Lignin Polymer Produce Natural Like Extracellular Lignin in a Cell Culture of Norway Spruce. Warinowski T; Koutaniemi S; Kärkönen A; Sundberg I; Toikka M; Simola LK; Kilpeläinen I; Teeri TH Front Plant Sci; 2016; 7():1523. PubMed ID: 27803704 [TBL] [Abstract][Full Text] [Related]
24. Effect of aqueous environment in chemical reactivity of monolignols. A New Fukui Function Study. Martínez C; Sedano M; Mendoza J; Herrera R; Rutiaga JG; Lopez P J Mol Graph Model; 2009 Sep; 28(2):196-201. PubMed ID: 19647459 [TBL] [Abstract][Full Text] [Related]
25. Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Morreel K; Ralph J; Kim H; Lu F; Goeminne G; Ralph S; Messens E; Boerjan W Plant Physiol; 2004 Nov; 136(3):3537-49. PubMed ID: 15516504 [TBL] [Abstract][Full Text] [Related]
26. A polymer of caffeyl alcohol in plant seeds. Chen F; Tobimatsu Y; Havkin-Frenkel D; Dixon RA; Ralph J Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1772-7. PubMed ID: 22307645 [TBL] [Abstract][Full Text] [Related]
27. Reactivity of lignin subunits: the influence of dehydrogenation and formation of dimeric structures. Maia RA; Ventorim G; Batagin-Neto A J Mol Model; 2019 Jul; 25(8):228. PubMed ID: 31317341 [TBL] [Abstract][Full Text] [Related]
28. Insights into lignin primary structure and deconstruction from Arabidopsis thaliana COMT (caffeic acid O-methyl transferase) mutant Atomt1. Moinuddin SG; Jourdes M; Laskar DD; Ki C; Cardenas CL; Kim KW; Zhang D; Davin LB; Lewis NG Org Biomol Chem; 2010 Sep; 8(17):3928-46. PubMed ID: 20652169 [TBL] [Abstract][Full Text] [Related]
30. Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins. Carlos Del Río J; Rencoret J; Gutiérrez A; Kim H; Ralph J Plant Physiol; 2017 Aug; 174(4):2072-2082. PubMed ID: 28588115 [TBL] [Abstract][Full Text] [Related]
32. Biomimetic oxidative coupling of sinapyl acetate by silver oxide: preferential formation of β-O-4 type structures. Kishimoto T; Takahashi N; Hamada M; Nakajima N J Agric Food Chem; 2015 Mar; 63(8):2277-83. PubMed ID: 25654327 [TBL] [Abstract][Full Text] [Related]
33. Spin-polarized conceptual density functional theory study of the regioselectivity in ring closures of radicals. Pintér B; De Proft F; Van Speybroeck V; Hemelsoet K; Waroquier M; Chamorro E; Veszprémi T; Geerlings P J Org Chem; 2007 Jan; 72(2):348-56. PubMed ID: 17221949 [TBL] [Abstract][Full Text] [Related]
34. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction. da Silva G; Chen CC; Bozzelli JW J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501 [TBL] [Abstract][Full Text] [Related]
35. On the factors affecting product distribution in laccase-catalyzed oxidation of a lignin model compound vanillyl alcohol: experimental and computational evaluation. Lahtinen M; Heinonen P; Oivanen M; Karhunen P; Kruus K; Sipilä J Org Biomol Chem; 2013 Sep; 11(33):5454-64. PubMed ID: 23851662 [TBL] [Abstract][Full Text] [Related]
36. Radical intermediates during degradation of lignin-model compounds and environmental pollutants: an electron spin resonance study. Kalyanaraman B Xenobiotica; 1995 Jul; 25(7):667-75. PubMed ID: 7483665 [TBL] [Abstract][Full Text] [Related]
38. Oxidative coupling during lignin polymerization is determined by unpaired electron delocalization within parent phenylpropanoid radicals. Russell WR; Forrester AR; Chesson A; Burkitt MJ Arch Biochem Biophys; 1996 Aug; 332(2):357-66. PubMed ID: 8806746 [TBL] [Abstract][Full Text] [Related]
39. High-Field Electron Paramagnetic Resonance and Density Functional Theory Study of Stable Organic Radicals in Lignin: Influence of the Extraction Process, Botanical Origin, and Protonation Reactions on the Radical g Tensor. Bährle C; Nick TU; Bennati M; Jeschke G; Vogel F J Phys Chem A; 2015 Jun; 119(24):6475-82. PubMed ID: 25978006 [TBL] [Abstract][Full Text] [Related]
40. Biomimetic oxidative copolymerization of hydroxystilbenes and monolignols. Kim H; Rencoret J; Elder TJ; Del Río JC; Ralph J Sci Adv; 2023 Mar; 9(10):eade5519. PubMed ID: 36888720 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]