These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 22475526)
1. Electrocatalytic properties of prussian blue nanoparticles supported on poly(m-aminobenzenesulphonic acid)-functionalised single-walled carbon nanotubes towards the detection of dopamine. Adekunle AS; Farah AM; Pillay J; Ozoemena KI; Mamba BB; Agboola BO Colloids Surf B Biointerfaces; 2012 Jun; 95():186-94. PubMed ID: 22475526 [TBL] [Abstract][Full Text] [Related]
2. Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified Nafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes. Quan do P; Tuyen do P; Lam TD; Tram PT; Binh NH; Viet PH Colloids Surf B Biointerfaces; 2011 Dec; 88(2):764-70. PubMed ID: 21907551 [TBL] [Abstract][Full Text] [Related]
3. DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. Lin X; Kang G; Lu L Bioelectrochemistry; 2007 May; 70(2):235-44. PubMed ID: 17079195 [TBL] [Abstract][Full Text] [Related]
4. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Wang HS; Li TH; Jia WL; Xu HY Biosens Bioelectron; 2006 Dec; 22(5):664-9. PubMed ID: 16621509 [TBL] [Abstract][Full Text] [Related]
5. Application of multi-walled carbon nanotubes modified carbon ionic liquid electrode for electrocatalytic oxidation of dopamine. Li Y; Liu X; Liu X; Mai N; Li Y; Wei W; Cai Q Colloids Surf B Biointerfaces; 2011 Nov; 88(1):402-6. PubMed ID: 21831611 [TBL] [Abstract][Full Text] [Related]
6. Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode. Li Y; Du J; Yang J; Liu D; Lu X Colloids Surf B Biointerfaces; 2012 Sep; 97():32-6. PubMed ID: 22580482 [TBL] [Abstract][Full Text] [Related]
7. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine. Zhang S; He P; Zhang G; Lei W; He H Anal Sci; 2015; 31(7):657-62. PubMed ID: 26165288 [TBL] [Abstract][Full Text] [Related]
8. Overoxidized polypyrrole/multi-walled carbon nanotubes composite modified electrode for in vivo liquid chromatography-electrochemical detection of dopamine. Wen J; Zhou L; Jin L; Cao X; Ye BC J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Jul; 877(20-21):1793-8. PubMed ID: 19473890 [TBL] [Abstract][Full Text] [Related]
9. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Li Y; Wang P; Wang L; Lin X Biosens Bioelectron; 2007 Jun; 22(12):3120-5. PubMed ID: 17350819 [TBL] [Abstract][Full Text] [Related]
10. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip. Li X; Chen Z; Zhong Y; Yang F; Pan J; Liang Y Anal Chim Acta; 2012 Jan; 710():118-24. PubMed ID: 22123120 [TBL] [Abstract][Full Text] [Related]
11. Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles. Ghalkhani M; Shahrokhian S; Ghorbani-Bidkorbeh F Talanta; 2009 Nov; 80(1):31-8. PubMed ID: 19782189 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. Mazloum-Ardakani M; Beitollahi H; Ganjipour B; Naeimi H; Nejati M Bioelectrochemistry; 2009 Apr; 75(1):1-8. PubMed ID: 19195936 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous electrochemical sensing of ascorbic acid, dopamine and uric acid at anodized nanocrystalline graphite-like pyrolytic carbon film electrode. Hadi M; Rouhollahi A Anal Chim Acta; 2012 Apr; 721():55-60. PubMed ID: 22405300 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2. Qiu JD; Peng HZ; Liang RP; Li J; Xia XH Langmuir; 2007 Feb; 23(4):2133-7. PubMed ID: 17279705 [TBL] [Abstract][Full Text] [Related]
15. A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode. Deng C; Chen J; Wang M; Xiao C; Nie Z; Yao S Biosens Bioelectron; 2009 Mar; 24(7):2091-4. PubMed ID: 19084392 [TBL] [Abstract][Full Text] [Related]
16. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Banks CE; Compton RG Analyst; 2005 Sep; 130(9):1232-9. PubMed ID: 16096667 [TBL] [Abstract][Full Text] [Related]
17. Direct electrochemistry and electrocatalysis of reduced glutathione on CNFs-PDDA/PB nanocomposite film modified ITO electrode for biosensors. Muthirulan P; Velmurugan R Colloids Surf B Biointerfaces; 2011 Apr; 83(2):347-54. PubMed ID: 21215598 [TBL] [Abstract][Full Text] [Related]
18. In situ synthesis and characterization of multi-walled carbon nanotube/Prussian blue nanocomposite materials and application. Qiu JD; Xiong M; Liang RP; Zhang J; Xia XH J Nanosci Nanotechnol; 2008 Sep; 8(9):4453-60. PubMed ID: 19049040 [TBL] [Abstract][Full Text] [Related]