These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22475566)

  • 1. Improving comfort of shoe sole through experiments based on CAD-FEM modeling.
    Franciosa P; Gerbino S; Lanzotti A; Silvestri L
    Med Eng Phys; 2013 Jan; 35(1):36-46. PubMed ID: 22475566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of auxetic lattice structured shoe sole in advancing footwear comfort-From the perspective of plantar pressure and contact area.
    Zhang J; Lu S; Yang Y; Liu Y; Guo Y; Wang H
    Front Public Health; 2024; 12():1412518. PubMed ID: 38962776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nonlinear finite element analysis and plantar pressure measurement for various shoe soles in heel region.
    Shiang TY
    Proc Natl Sci Counc Repub China B; 1997 Oct; 21(4):168-74. PubMed ID: 9369026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of different footwear characteristics, of a ballet flat pump, on centre of pressure progression and perceived comfort.
    Branthwaite H; Chockalingam N; Greenhalgh A; Chatzistergos P
    Foot (Edinb); 2014 Sep; 24(3):116-22. PubMed ID: 24939663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models.
    Erdemir A; Saucerman JJ; Lemmon D; Loppnow B; Turso B; Ulbrecht JS; Cavanagh PR
    J Biomech; 2005 Sep; 38(9):1798-806. PubMed ID: 16023466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plantar pressure relief in the diabetic foot using forefoot offloading shoes.
    Bus SA; van Deursen RW; Kanade RV; Wissink M; Manning EA; van Baal JG; Harding KG
    Gait Posture; 2009 Jun; 29(4):618-22. PubMed ID: 19217785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forefoot plantar pressure reduction of off-the-shelf rocker bottom provisional footwear.
    Kavros SJ; Van Straaten MG; Coleman Wood KA; Kaufman KR
    Clin Biomech (Bristol, Avon); 2011 Aug; 26(7):778-82. PubMed ID: 21511374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and pilot testing of the DVA/Seattle Footwear System for diabetic patients with foot insensitivity.
    Reiber GE; Smith DG; Boone DA; del Aguila M; Borchers RE; Mathews D; Joseph AW; Burgess EM
    J Rehabil Res Dev; 1997 Jan; 34(1):1-8. PubMed ID: 9021621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-shoe pressure distribution in "unstable" (MBT) shoes and flat-bottomed training shoes: a comparative study.
    Stewart L; Gibson JN; Thomson CE
    Gait Posture; 2007 Apr; 25(4):648-51. PubMed ID: 16901702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medical-grade footwear: the impact of fit and comfort.
    Hurst B; Branthwaite H; Greenhalgh A; Chockalingam N
    J Foot Ankle Res; 2017; 10():2. PubMed ID: 28070223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification and mass production technique for three-quarter shoe insoles using non-weight-bearing plantar shapes.
    Sun SP; Chou YJ; Sue CC
    Appl Ergon; 2009 Jul; 40(4):630-5. PubMed ID: 18620334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceived comfort and pressure distribution in casual footwear.
    Jordan C; Payton C; Bartlett R
    Clin Biomech (Bristol, Avon); 1997 Apr; 12(3):S5. PubMed ID: 11415701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Footbed shapes for enhanced footwear comfort.
    Witana CP; Goonetilleke RS; Au EY; Xiong S; Lu X
    Ergonomics; 2009 May; 52(5):617-28. PubMed ID: 19424923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of shoe inserts and heel height on foot pressure, impact force, and perceived comfort during walking.
    Yung-Hui L; Wei-Hsien H
    Appl Ergon; 2005 May; 36(3):355-62. PubMed ID: 15854579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people.
    Menant JC; Perry SD; Steele JR; Menz HB; Munro BJ; Lord SR
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1970-6. PubMed ID: 18760402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between footwear comfort of shoe inserts and anthropometric and sensory factors.
    Mündermann A; Stefanyshyn DJ; Nigg BM
    Med Sci Sports Exerc; 2001 Nov; 33(11):1939-45. PubMed ID: 11689747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing plantar pressure in rheumatoid arthritis: a comparison of running versus off-the-shelf orthopaedic footwear.
    Hennessy K; Burns J; Penkala S
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):917-23. PubMed ID: 17582663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of thermal models of footwear using finite element analysis.
    Covill D; Guan ZW; Bailey M; Raval H
    Proc Inst Mech Eng H; 2011 Mar; 225(3):268-81. PubMed ID: 21485328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of contouring and hardness of foot orthoses on ratings of perceived comfort.
    Mills K; Blanch P; Vicenzino B
    Med Sci Sports Exerc; 2011 Aug; 43(8):1507-12. PubMed ID: 21233775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the viability of obtaining a generic animation of the foot while walking for the virtual testing of footwear using dorsal pressures.
    Rupérez MJ; Alemany S; Monserrat C; Olaso J; Alcañíz M; González JC
    J Biomech; 2009 Sep; 42(13):2040-6. PubMed ID: 19679310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.