These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 22476028)

  • 21. Potential novel pharmacological therapies for myocardial remodelling.
    Landmesser U; Wollert KC; Drexler H
    Cardiovasc Res; 2009 Feb; 81(3):519-27. PubMed ID: 19019834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction.
    Sumida A; Horiba M; Ishiguro H; Takenaka H; Ueda N; Ooboshi H; Opthof T; Kadomatsu K; Kodama I
    Cardiovasc Res; 2010 Apr; 86(1):113-21. PubMed ID: 19969622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury.
    Ye Y; Hu Z; Lin Y; Zhang C; Perez-Polo JR
    Cardiovasc Res; 2010 Aug; 87(3):535-44. PubMed ID: 20164119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease.
    Xu Q; Seeger FH; Castillo J; Iekushi K; Boon RA; Farcas R; Manavski Y; Li YG; Assmus B; Zeiher AM; Dimmeler S
    J Am Coll Cardiol; 2012 Jun; 59(23):2107-17. PubMed ID: 22651868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SDF-1α as a therapeutic stem cell homing factor in myocardial infarction.
    Ghadge SK; Mühlstedt S; Ozcelik C; Bader M
    Pharmacol Ther; 2011 Jan; 129(1):97-108. PubMed ID: 20965212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application.
    Sun T; Dong YH; Du W; Shi CY; Wang K; Tariq MA; Wang JX; Li PF
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28362341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical role for leukocyte hypoxia inducible factor-1alpha expression in post-myocardial infarction left ventricular remodeling.
    Dong F; Khalil M; Kiedrowski M; O'Connor C; Petrovic E; Zhou X; Penn MS
    Circ Res; 2010 Feb; 106(3):601-10. PubMed ID: 20035082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MicroRNAs: promising therapeutic targets for the treatment of pulmonary arterial hypertension.
    Yuan K; Orcholski M; Tian X; Liao X; de Jesus Perez VA
    Expert Opin Ther Targets; 2013 May; 17(5):557-64. PubMed ID: 23379818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting microRNAs for cardiovascular therapeutics in coronary artery disease.
    Hinkel R; Ng JK; Kupatt C
    Curr Opin Cardiol; 2014 Nov; 29(6):586-94. PubMed ID: 25159281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Down-regulation of miR-133a/b in patients with myocardial infarction correlates with the presence of ventricular fibrillation.
    Boštjančič E; Brandner T; Zidar N; Glavač D; Štajer D
    Biomed Pharmacother; 2018 Mar; 99():65-71. PubMed ID: 29324314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNAs as predictive biomarkers for myocardial injury in aged mice following myocardial infarction.
    Qipshidze Kelm N; Piell KM; Wang E; Cole MP
    J Cell Physiol; 2018 Jul; 233(7):5214-5221. PubMed ID: 29150941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of MicroRNAs in Endothelial Progenitor Cells: Implication for Cardiac Repair.
    Goretti E; Wagner DR; Devaux Y
    J Stem Cells; 2014; 9(2):107-15. PubMed ID: 25158159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. miRNAs in cardiac disease: sitting duck or moving target?
    Hynes CJ; Clancy JL; Preiss T
    IUBMB Life; 2012 Nov; 64(11):872-8. PubMed ID: 23011932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of microRNAs in cardiac remodelling: new insights and future perspectives.
    Orenes-Piñero E; Montoro-García S; Patel JV; Valdés M; Marín F; Lip GY
    Int J Cardiol; 2013 Sep; 167(5):1651-9. PubMed ID: 23063140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MicroRNAs: A Neoteric Approach to Understand Pathogenesis, Diagnose, and Treat Myocardial Infarction.
    Sayed-Pathan NI; Kumar P; Paknikar KM; Gajbhiye V
    J Cardiovasc Pharmacol; 2021 Dec; 78(6):773-781. PubMed ID: 34882110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional Network Analysis Reveals Versatile MicroRNAs in Human Heart.
    Xu Y; Zhu W; Sun Y; Wang Z; Yuan W; Du Z
    Cell Physiol Biochem; 2015; 36(4):1628-43. PubMed ID: 26160134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-Coding RNAs: Prevention, Diagnosis, and Treatment in Myocardial Ischemia-Reperfusion Injury.
    Marinescu MC; Lazar AL; Marta MM; Cozma A; Catana CS
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The emerging role of miRNAs in myocardial infarction: From molecular signatures to therapeutic targets.
    Mohammed OA; Alghamdi M; Alfaifi J; Alamri MMS; Al-Shahrani AM; Alharthi MH; Alshahrani AM; Alhalafi AH; Adam MIE; Bahashwan E; Jarallah AlQahtani AA; BinAfif WF; Abdel-Reheim MA; Abdel Mageed SS; Doghish AS
    Pathol Res Pract; 2024 Jan; 253():155087. PubMed ID: 38183820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MicroRNAs as potential therapeutic agents in the treatment of myocardial infarction.
    Heyn J; Hinske C; Möhnle P; Luchting B; Beiras-Fernandez A; Kreth S
    Curr Vasc Pharmacol; 2011 Nov; 9(6):733-40. PubMed ID: 21619546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MicroRNAs in myocardial infarction.
    Boon RA; Dimmeler S
    Nat Rev Cardiol; 2015 Mar; 12(3):135-42. PubMed ID: 25511085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.