These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22476350)

  • 1. Decrease of herbicide bromobutide and its debromo metabolite in paddy field soil during 24 weeks after application.
    Morohashi M; Nagasawa S; Enya N; Ohno M; Suzuki K; Kose T; Kawata K
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):176-80. PubMed ID: 22476350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of bromobutide in paddy water and soil after application.
    Morohashi M; Nagasawa S; Enya N; Suzuki K; Kose T; Kawata K
    Bull Environ Contam Toxicol; 2012 Apr; 88(4):521-5. PubMed ID: 22297629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior of herbicide pyrazolynate and its hydrolysate in paddy fields after application.
    Kubo T; Ohno M; Nagasawa S; Kose T; Kawata K
    Bull Environ Contam Toxicol; 2012 Nov; 89(5):985-9. PubMed ID: 22914901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of degradation and adsorption-desorption isotherms of thiobencarb and oxadiargyl in calcareous paddy fields.
    Mahmoudi M; Rahnemaie R; Es-haghi A; Malakouti MJ
    Chemosphere; 2013 May; 91(7):1009-17. PubMed ID: 23461836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decrease of 4,5,6,7-tetrachlorophthalide in paddy field soil after aerial application.
    Iwashita M; Maeda T; Hori T; Asada T; Oikawa K; Kawata K
    Bull Environ Contam Toxicol; 2008 Oct; 81(4):383-6. PubMed ID: 18670728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of simetryn and thiobencarb in the plough zone of rice fields.
    Phong TK; Nhung DT; Motobayashi T; Watanabe H
    Bull Environ Contam Toxicol; 2009 Dec; 83(6):794-8. PubMed ID: 19585064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on pesticide runoff from paddy fields to a river in rural region--1: field survey of pesticide runoff in the Kozakura River, Japan.
    Nakano Y; Miyazaki A; Yoshida T; Ono K; Inoue T
    Water Res; 2004 Jul; 38(13):3017-22. PubMed ID: 15261539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal variations in pentachlorophenol dissipation at the aerobic--anaerobic interfaces of flooded paddy soils.
    Lin J; Xu Y; Brookes PC; He Y; Xu J
    Environ Pollut; 2013 Jul; 178():433-40. PubMed ID: 23628887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental fate of the herbicide molinate in a rice-paddy-soil lysimeter.
    Park BJ; Kyung KS; Choi JH; Im GJ; Kim IS; Shim JH
    Bull Environ Contam Toxicol; 2005 Nov; 75(5):937-44. PubMed ID: 16400582
    [No Abstract]   [Full Text] [Related]  

  • 10. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils.
    Khan KA; Stroud JL; Zhu YG; McGrath SP; Zhao FJ
    Environ Sci Technol; 2010 Nov; 44(22):8515-21. PubMed ID: 20977268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. National trends in pesticides in drinking water and water sources in Japan.
    Kamata M; Matsui Y; Asami M
    Sci Total Environ; 2020 Nov; 744():140930. PubMed ID: 32711323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting herbicides concentrations in paddy water and runoff to the river basin.
    Parveen S; Kohguchi T; Biswas M; Nakagoshi N
    J Environ Sci (China); 2005; 17(4):631-6. PubMed ID: 16158594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipation of propanil and 3,4 dichloroaniline in three different rice management systems.
    Milan M; Vidotto F; Piano S; Negre M; Ferrero A
    J Environ Qual; 2012; 41(5):1487-96. PubMed ID: 23099940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dymron herbicide residues in paddy soil and channel water.
    Nagami H; Asanuma S; Yajima N; Usuda M; Hirosawa M; Shimizu S
    Bull Environ Contam Toxicol; 2004 Aug; 73(2):326-30. PubMed ID: 15386047
    [No Abstract]   [Full Text] [Related]  

  • 15. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.
    Ahmed ZU; Panaullah GM; DeGloria SD; Duxbury JM
    Sci Total Environ; 2011 Dec; 412-413():324-35. PubMed ID: 22055452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaching and half-life of the herbicide tebuthiuron on a recharge area of Guarany aquifer in sugarcane fields in Brazil.
    Cerdeira AL; Desouza MD; Queiroz SC; Ferracini VL; Bolonhezi D; Gomes MA; Rosa MA; Balderrama O; Rampazzo P; Queiroz RH; Neto CF; Matallo MB
    J Environ Sci Health B; 2007 Aug; 42(6):635-9. PubMed ID: 17701698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pesticide storage and release in unsaturated soil in Illinois, USA.
    Roy WR; Krapac IG; Chou SF; Simmons FW
    J Environ Sci Health B; 2001 May; 36(3):245-60. PubMed ID: 11411849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodegradation of imidacloprid and fipronil in rice-paddy water.
    Thuyet DQ; Watanabe H; Yamazaki K; Takagi K
    Bull Environ Contam Toxicol; 2011 May; 86(5):548-53. PubMed ID: 21424709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model.
    Watanabe H; Takagi K; Vu SH
    Pest Manag Sci; 2006 Jan; 62(1):20-9. PubMed ID: 16261540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental fate of SYP-1924 residues in rice field.
    Zhu X; Jia C; He M; Yu P; Chen L; Zhao E
    Bull Environ Contam Toxicol; 2010 Jun; 84(6):775-8. PubMed ID: 20449722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.