BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22476500)

  • 1. A perspective on underwater photosynthesis in submerged terrestrial wetland plants.
    Colmer TD; Winkel A; Pedersen O
    AoB Plants; 2011; 2011():plr030. PubMed ID: 22476500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flood tolerance of Glyceria fluitans: the importance of cuticle hydrophobicity, permeability and leaf gas films for underwater gas exchange.
    Konnerup D; Pedersen O
    Ann Bot; 2017 Oct; 120(4):521-528. PubMed ID: 29059317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange.
    Colmer TD; Pedersen O
    New Phytol; 2008; 177(4):918-926. PubMed ID: 18086222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.
    Pedersen O; Rich SM; Colmer TD
    Plant J; 2009 Apr; 58(1):147-56. PubMed ID: 19077169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity.
    Mommer L; Visser EJ
    Ann Bot; 2005 Sep; 96(4):581-9. PubMed ID: 16024559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf gas films of Spartina anglica enhance rhizome and root oxygen during tidal submergence.
    Winkel A; Colmer TD; Pedersen O
    Plant Cell Environ; 2011 Dec; 34(12):2083-92. PubMed ID: 21819414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study.
    Mommer L; Pons TL; Visser EJ
    J Exp Bot; 2006; 57(2):283-90. PubMed ID: 16291797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance.
    Mommer L; Pons TL; Wolters-Arts M; Venema JH; Visser EJ
    Plant Physiol; 2005 Sep; 139(1):497-508. PubMed ID: 16126859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant
    Horiguchi G; Nemoto K; Yokoyama T; Hirotsu N
    AoB Plants; 2019 Apr; 11(2):plz009. PubMed ID: 30911367
    [No Abstract]   [Full Text] [Related]  

  • 10. Leaf gas films, underwater photosynthesis and plant species distributions in a flood gradient.
    Winkel A; Visser EJ; Colmer TD; Brodersen KP; Voesenek LA; Sand-Jensen K; Pedersen O
    Plant Cell Environ; 2016 Jul; 39(7):1537-48. PubMed ID: 26846194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Underwater photosynthesis of submerged plants - recent advances and methods.
    Pedersen O; Colmer TD; Sand-Jensen K
    Front Plant Sci; 2013; 4():140. PubMed ID: 23734154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water.
    Teakle NL; Colmer TD; Pedersen O
    Plant Cell Environ; 2014 Oct; 37(10):2339-49. PubMed ID: 24393094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flood tolerance of wheat - the importance of leaf gas films during complete submergence.
    Winkel A; Herzog M; Konnerup D; Floytrup AH; Pedersen O
    Funct Plant Biol; 2017 Sep; 44(9):888-898. PubMed ID: 32480617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii.
    Rich SM; Ludwig M; Colmer TD
    Ann Bot; 2012 Jul; 110(2):405-14. PubMed ID: 22419759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition From Proto-Kranz-Type Photosynthesis to HCO
    Horiguchi G; Matsumoto K; Nemoto K; Inokuchi M; Hirotsu N
    Front Plant Sci; 2021; 12():675507. PubMed ID: 34220895
    [No Abstract]   [Full Text] [Related]  

  • 16. Submergence-induced leaf acclimation in terrestrial species varying in flooding tolerance.
    Mommer L; Wolters-Arts M; Andersen C; Visser EJW; Pedersen O
    New Phytol; 2007; 176(2):337-345. PubMed ID: 17888115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How plants cope with complete submergence.
    Voesenek LA; Colmer TD; Pierik R; Millenaar FF; Peeters AJ
    New Phytol; 2006; 170(2):213-26. PubMed ID: 16608449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes.
    Winkel A; Pedersen O; Ella E; Ismail AM; Colmer TD
    J Exp Bot; 2014 Jul; 65(12):3225-33. PubMed ID: 24759881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis.
    Pedersen O; Rich SM; Pulido C; Cawthray GR; Colmer TD
    New Phytol; 2011 Apr; 190(2):332-9. PubMed ID: 21062288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance.
    Kurokawa Y; Nagai K; Huan PD; Shimazaki K; Qu H; Mori Y; Toda Y; Kuroha T; Hayashi N; Aiga S; Itoh JI; Yoshimura A; Sasaki-Sekimoto Y; Ohta H; Shimojima M; Malik AI; Pedersen O; Colmer TD; Ashikari M
    New Phytol; 2018 Jun; 218(4):1558-1569. PubMed ID: 29498045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.