BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 22476700)

  • 1. Multifunctional roles of NAD⁺ and NADH in astrocytes.
    Wilhelm F; Hirrlinger J
    Neurochem Res; 2012 Nov; 37(11):2317-25. PubMed ID: 22476700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NAD+ /NADH redox state in astrocytes: independent control of the NAD+ and NADH content.
    Wilhelm F; Hirrlinger J
    J Neurosci Res; 2011 Dec; 89(12):1956-64. PubMed ID: 21488092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD⁺/NADH metabolism and NAD⁺-dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications.
    Ma Y; Nie H; Chen H; Li J; Hong Y; Wang B; Wang C; Zhang J; Cao W; Zhang M; Xu Y; Ding X; Yin SK; Qu X; Ying W
    Curr Med Chem; 2015; 22(10):1239-47. PubMed ID: 25666794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NBCe1 mediates the regulation of the NADH/NAD
    Köhler S; Winkler U; Sicker M; Hirrlinger J
    Glia; 2018 Oct; 66(10):2233-2245. PubMed ID: 30208253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH can enter into astrocytes and block poly(ADP-ribose) polymerase-1-mediated astrocyte death.
    Zhu K; Swanson RA; Ying W
    Neuroreport; 2005 Aug; 16(11):1209-12. PubMed ID: 16012350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD+ and NADH in cellular functions and cell death.
    Ying W
    Front Biosci; 2006 Sep; 11():3129-48. PubMed ID: 16720381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The balance between NAD
    Strømland Ø; Diab J; Ferrario E; Sverkeli LJ; Ziegler M
    Mech Ageing Dev; 2021 Oct; 199():111569. PubMed ID: 34509469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk of Signaling and Metabolism Mediated by the NAD(+)/NADH Redox State in Brain Cells.
    Winkler U; Hirrlinger J
    Neurochem Res; 2015 Dec; 40(12):2394-401. PubMed ID: 25876186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca²⁺ signals of astrocytes are modulated by the NAD⁺/NADH redox state.
    Requardt RP; Hirrlinger PG; Wilhelm F; Winkler U; Besser S; Hirrlinger J
    J Neurochem; 2012 Mar; 120(6):1014-25. PubMed ID: 22299833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adipose tissue NAD
    Jokinen R; Pirnes-Karhu S; Pietiläinen KH; Pirinen E
    Redox Biol; 2017 Aug; 12():246-263. PubMed ID: 28279944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular Compartmentation and the Redox/Nonredox Functions of NAD
    Kulkarni CA; Brookes PS
    Antioxid Redox Signal; 2019 Sep; 31(9):623-642. PubMed ID: 30784294
    [No Abstract]   [Full Text] [Related]  

  • 12. Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury.
    Owens K; Park JH; Schuh R; Kristian T
    Transl Stroke Res; 2013 Dec; 4(6):618-34. PubMed ID: 24323416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD and the aging process: Role in life, death and everything in between.
    Chini CCS; Tarragó MG; Chini EN
    Mol Cell Endocrinol; 2017 Nov; 455():62-74. PubMed ID: 27825999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes.
    Verderio C; Bruzzone S; Zocchi E; Fedele E; Schenk U; De Flora A; Matteoli M
    J Neurochem; 2001 Aug; 78(3):646-57. PubMed ID: 11483668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence.
    Braidy N; Poljak A; Grant R; Jayasena T; Mansour H; Chan-Ling T; Guillemin GJ; Smythe G; Sachdev P
    Biogerontology; 2014 Apr; 15(2):177-98. PubMed ID: 24337988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic regulation of NAD metabolism in mitochondria.
    Stein LR; Imai S
    Trends Endocrinol Metab; 2012 Sep; 23(9):420-8. PubMed ID: 22819213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic control by sirtuins and other enzymes that sense NAD
    Anderson KA; Madsen AS; Olsen CA; Hirschey MD
    Biochim Biophys Acta Bioenerg; 2017 Dec; 1858(12):991-998. PubMed ID: 28947253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of cyclizing NAD to cyclic ADP-ribose by ADP-ribosyl cyclase and CD38.
    Graeff R; Liu Q; Kriksunov IA; Kotaka M; Oppenheimer N; Hao Q; Lee HC
    J Biol Chem; 2009 Oct; 284(40):27629-36. PubMed ID: 19640843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.
    Long A; Park JH; Klimova N; Fowler C; Loane DJ; Kristian T
    Neurochem Res; 2017 Jan; 42(1):283-293. PubMed ID: 27518087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.
    Pellny TK; Locato V; Vivancos PD; Markovic J; De Gara L; Pallardó FV; Foyer CH
    Mol Plant; 2009 May; 2(3):442-56. PubMed ID: 19825628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.