BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 22476700)

  • 21. CD38 positively regulates postnatal development of astrocytes cell-autonomously and oligodendrocytes non-cell-autonomously.
    Hattori T; Kaji M; Ishii H; Jureepon R; Takarada-Iemata M; Minh Ta H; Manh Le T; Konno A; Hirai H; Shiraishi Y; Ozaki N; Yamamoto Y; Okamoto H; Yokoyama S; Higashida H; Kitao Y; Hori O
    Glia; 2017 Jun; 65(6):974-989. PubMed ID: 28295574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The potential regulatory roles of NAD(+) and its metabolism in autophagy.
    Zhang DX; Zhang JP; Hu JY; Huang YS
    Metabolism; 2016 Apr; 65(4):454-62. PubMed ID: 26975537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for an intracellular ADP-ribosyl cyclase/NAD+-glycohydrolase in brain from CD38-deficient mice.
    Ceni C; Muller-Steffner H; Lund F; Pochon N; Schweitzer A; De Waard M; Schuber F; Villaz M; Moutin MJ
    J Biol Chem; 2003 Oct; 278(42):40670-8. PubMed ID: 12909645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interplay between compartmentalized NAD
    Cohen MS
    Genes Dev; 2020 Mar; 34(5-6):254-262. PubMed ID: 32029457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD
    Ogura Y; Kitada M; Xu J; Monno I; Koya D
    Aging (Albany NY); 2020 Jun; 12(12):11325-11336. PubMed ID: 32507768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases.
    Cakir-Kiefer C; Muller-Steffner H; Schuber F
    Biochem J; 2000 Jul; 349(Pt 1):203-10. PubMed ID: 10861229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nicotinamide adenine dinucleotide: beyond a redox coenzyme.
    Lin H
    Org Biomol Chem; 2007 Aug; 5(16):2541-54. PubMed ID: 18019526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders.
    Srivastava S
    Clin Transl Med; 2016 Dec; 5(1):25. PubMed ID: 27465020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NAD metabolism in aging and cancer.
    Kincaid JW; Berger NA
    Exp Biol Med (Maywood); 2020 Nov; 245(17):1594-1614. PubMed ID: 32500741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of two classes of ADP-ribose transfer reactions in immune signaling.
    Han MK; Cho YS; Kim YS; Yim CY; Kim UH
    J Biol Chem; 2000 Jul; 275(27):20799-805. PubMed ID: 10777496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of NAD
    Liu Y; Wang X; Xie J; Tang M
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NAD+ and NADH in brain functions, brain diseases and brain aging.
    Ying W
    Front Biosci; 2007 Jan; 12():1863-88. PubMed ID: 17127427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CD38 Inhibits Prostate Cancer Metabolism and Proliferation by Reducing Cellular NAD
    Chmielewski JP; Bowlby SC; Wheeler FB; Shi L; Sui G; Davis AL; Howard TD; D'Agostino RB; Miller LD; Sirintrapun SJ; Cramer SD; Kridel SJ
    Mol Cancer Res; 2018 Nov; 16(11):1687-1700. PubMed ID: 30076241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cytosolic redox state of astrocytes: Maintenance, regulation and functional implications for metabolite trafficking.
    Hirrlinger J; Dringen R
    Brain Res Rev; 2010 May; 63(1-2):177-88. PubMed ID: 19883686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.
    Cantó C; Sauve AA; Bai P
    Mol Aspects Med; 2013 Dec; 34(6):1168-201. PubMed ID: 23357756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytosolic NADH-NAD(+) Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging.
    Mongeon R; Venkatachalam V; Yellen G
    Antioxid Redox Signal; 2016 Oct; 25(10):553-63. PubMed ID: 26857245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adp-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor. a primary role for cyclic ADP-ribose in hypoxic pulmonary vasoconstriction.
    Wilson HL; Dipp M; Thomas JM; Lad C; Galione A; Evans AM
    J Biol Chem; 2001 Apr; 276(14):11180-8. PubMed ID: 11116136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NAD
    Lin Q; Zuo W; Liu Y; Wu K; Liu Q
    Clin Chim Acta; 2021 Apr; 515():104-110. PubMed ID: 33485900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.