These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22476709)

  • 1. Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study.
    Li X; Popel AS; Karniadakis GE
    Phys Biol; 2012 Apr; 9(2):026010. PubMed ID: 22476709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees.
    Lykov K; Li X; Lei H; Pivkin IV; Karniadakis GE
    PLoS Comput Biol; 2015 Aug; 11(8):e1004410. PubMed ID: 26317829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle collisions and aggregation on red blood cell passage through a bifurcation.
    Chesnutt JK; Marshall JS
    Microvasc Res; 2009 Dec; 78(3):301-13. PubMed ID: 19766127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red Blood Cell Partitioning Using a Microfluidic Channel with Ladder Structure.
    Hyakutake T; Tsutsumi Y; Miyoshi Y; Yasui M; Mizuno T; Tateno M
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of margination of platelet-sized particles in red blood cell suspensions flowing through Y-shaped bifurcating microchannels.
    Sugihara-Seki M; Onozawa T; Takinouchi N; Itano T; Seki J
    Biorheology; 2020; 57(2-4):101-116. PubMed ID: 33523035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamics of a healthy and infected red blood cell in flow through constricted channels: A DPD simulation.
    Hoque SZ; Anand DV; Patnaik BSV
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3105. PubMed ID: 29790664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-free layer development and spatial organization of healthy and rigid red blood cells in a microfluidic bifurcation.
    Rashidi Y; Aouane O; Darras A; John T; Harting J; Wagner C; Recktenwald SM
    Soft Matter; 2023 Aug; 19(33):6255-6266. PubMed ID: 37522517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red blood cell distribution in a microvascular network with successive bifurcations.
    Ye T; Peng L; Li G
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1821-1835. PubMed ID: 31161352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
    Ahmed F; Mehrabadi M; Liu Z; Barabino GA; Aidun CK
    J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29715334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-dimensional model for the red blood cell.
    Pan W; Caswell B; Karniadakis GE
    Soft Matter; 2010 Sep; 6(18):. PubMed ID: 24282440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape Transitions of Red Blood Cell under Oscillatory Flows in Microchannels.
    Akerkouch L; Le T
    Res Sq; 2023 Aug; ():. PubMed ID: 37693621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partitioning of dense RBC suspensions in single microfluidic bifurcations: role of cell deformability and bifurcation angle.
    Stathoulopoulos A; Passos A; Kaliviotis E; Balabani S
    Sci Rep; 2024 Jan; 14(1):535. PubMed ID: 38177195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemolysis prediction in bio-microfluidic applications using resolved CFD-DEM simulations.
    Porcaro C; Saeedipour M
    Comput Methods Programs Biomed; 2023 Apr; 231():107400. PubMed ID: 36774792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro study on the partitioning of red blood cells using a microchannel network.
    Hyakutake T; Abe H; Miyoshi Y; Yasui M; Suzuki R; Tsurumaki S; Tsutsumi Y
    Microvasc Res; 2022 Mar; 140():104281. PubMed ID: 34871649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
    Thomas A; Tan J; Liu Y
    Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Flow Separation of Red Blood Cells and Platelets in a Y-Microfluidic Channel Device with Saw-Tooth Profile Electrodes via Low Voltage Dielectrophoresis.
    Hewlin RL; Edwards M
    Curr Issues Mol Biol; 2023 Apr; 45(4):3048-3067. PubMed ID: 37185724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations.
    Barber JO; Alberding JP; Restrepo JM; Secomb TW
    Ann Biomed Eng; 2008 Oct; 36(10):1690-8. PubMed ID: 18686035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.