These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22476709)

  • 21. A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease.
    Li G; Qiang Y; Li H; Li X; Buffet PA; Dao M; Karniadakis GE
    PLoS Comput Biol; 2023 Dec; 19(12):e1011223. PubMed ID: 38091361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A numerical study of plasma skimming in small vascular bifurcations.
    Enden G; Popel AS
    J Biomech Eng; 1994 Feb; 116(1):79-88. PubMed ID: 8189718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease.
    Li G; Qiang Y; Li H; Li X; Buffet PA; Dao M; Karniadakis GE
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of a single red blood cell flowing through a microvessel stenosis using dissipative particle dynamics.
    Xiao LL; Chen S; Lin CS; Liu Y
    Mol Cell Biomech; 2014 Mar; 11(1):67-85. PubMed ID: 25330624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamical clustering of red blood cells in capillary vessels.
    Boryczko K; Dzwinel W; Yuen DA
    J Mol Model; 2003 Feb; 9(1):16-33. PubMed ID: 12638008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation.
    Hou HW; Bhagat AA; Chong AG; Mao P; Tan KS; Han J; Lim CT
    Lab Chip; 2010 Oct; 10(19):2605-13. PubMed ID: 20689864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.
    Hu R; Li F; Lv J; He Y; Lu D; Yamada T; Ono N
    Biomed Microdevices; 2015; 17(3):9959. PubMed ID: 26004808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blood cell distribution in small and large vessels: Effects of wall and rotating motion of red blood cells.
    Tsubota KI; Namioka K
    J Biomech; 2022 May; 137():111081. PubMed ID: 35472709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of microfluidic channels for magnetic separation of malaria-infected red blood cells.
    Wu WT; Martin AB; Gandini A; Aubry N; Massoudi M; Antaki JF
    Microfluid Nanofluidics; 2016; 20(2):. PubMed ID: 27761107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inversion of hematocrit partition at microfluidic bifurcations.
    Shen Z; Coupier G; Kaoui B; Polack B; Harting J; Misbah C; Podgorski T
    Microvasc Res; 2016 May; 105():40-6. PubMed ID: 26744089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrodynamic Microparticle Separation Mechanism Using Three-Dimensional Flow Profiles in Dual-Depth and Asymmetric Lattice-Shaped Microchannel Networks.
    Yanai T; Ouchi T; Yamada M; Seki M
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31242547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of red blood cell deformability on hematocrit profiles and platelet margination.
    Czaja B; Gutierrez M; Závodszky G; de Kanter D; Hoekstra A; Eniola-Adefeso O
    PLoS Comput Biol; 2020 Mar; 16(3):e1007716. PubMed ID: 32163405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiscale modeling of red blood cell mechanics and blood flow in malaria.
    Fedosov DA; Lei H; Caswell B; Suresh S; Karniadakis GE
    PLoS Comput Biol; 2011 Dec; 7(12):e1002270. PubMed ID: 22144878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flow-induced translocation of polymers through a fluidic channel: a dissipative particle dynamics simulation study.
    Guo J; Li X; Liu Y; Liang H
    J Chem Phys; 2011 Apr; 134(13):134906. PubMed ID: 21476773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hematocrit, viscosity and velocity distributions of aggregating and non-aggregating blood in a bifurcating microchannel.
    Sherwood JM; Kaliviotis E; Dusting J; Balabani S
    Biomech Model Mechanobiol; 2014 Apr; 13(2):259-73. PubMed ID: 23114881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation of a tumor cell flowing through a symmetric bifurcated microvessel.
    Xiao L; Chu J; Lin C; Zhang K; Chen S; Yang L
    Biomech Model Mechanobiol; 2023 Feb; 22(1):297-308. PubMed ID: 36287312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A two-fluid model for hematocrit distribution in microvascular networks.
    Hokkanen JE
    Med Phys; 1989; 16(3):319-25. PubMed ID: 2739615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Local Hematocrit Fluctuation Induced by Malaria-Infected Red Blood Cells and Its Effect on Microflow.
    Wang T; Xing Z
    Biomed Res Int; 2018; 2018():8065252. PubMed ID: 29850568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.