These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22476709)

  • 41. A Disposable Blood-on-a-Chip for Simultaneous Measurement of Multiple Biophysical Properties.
    Kang YJ
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424408
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The interaction of vortical flows with red cells in venous valve mimics.
    Sanchez ZAC; Vijayananda V; Virassammy DM; Rosenfeld L; Ramasubramanian AK
    Biomicrofluidics; 2022 Mar; 16(2):024103. PubMed ID: 35282036
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems.
    Quinn DJ; Pivkin I; Wong SY; Chiam KH; Dao M; Karniadakis GE; Suresh S
    Ann Biomed Eng; 2011 Mar; 39(3):1041-50. PubMed ID: 21240637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Continuous, intrinsic magnetic depletion of erythrocytes from whole blood with a quadrupole magnet and annular flow channel; pilot scale study.
    Moore LR; Mizutani D; Tanaka T; Buck A; Yazer M; Zborowski M; Chalmers JJ
    Biotechnol Bioeng; 2018 Jun; 115(6):1521-1530. PubMed ID: 29476625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical study on flows of red blood cells with liposome-encapsulated hemoglobin at microvascular bifurcation.
    Hyakutake T; Tominaga S; Matsumoto T; Yanase S
    J Biomech Eng; 2008 Feb; 130(1):011014. PubMed ID: 18298190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry.
    Cairone F; Ortiz D; Cabrales PJ; Intaglietta M; Bucolo M
    Microvasc Res; 2018 Mar; 116():77-86. PubMed ID: 28918110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit.
    Fitzgibbon S; Spann AP; Qi QM; Shaqfeh ESG
    Biophys J; 2015 May; 108(10):2601-2608. PubMed ID: 25992738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Particle-based simulations of red blood cells-A review.
    Ye T; Phan-Thien N; Lim CT
    J Biomech; 2016 Jul; 49(11):2255-2266. PubMed ID: 26706718
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New insights into the microvascular mechanisms of drag reducing polymers: effect on the cell-free layer.
    Brands J; Kliner D; Lipowsky HH; Kameneva MV; Villanueva FS; Pacella JJ
    PLoS One; 2013; 8(10):e77252. PubMed ID: 24124610
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.
    Karmakar A; Burgreen GW; Rydquist G; Antaki JF
    Comput Methods Programs Biomed; 2024 Apr; 247():108090. PubMed ID: 38394788
    [TBL] [Abstract][Full Text] [Related]  

  • 51.
    Mantegazza A; Clavica F; Obrist D
    Biomicrofluidics; 2020 Jan; 14(1):014101. PubMed ID: 31933711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows.
    Kang YJ
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Effect of Hematocrit on Platelet Adhesion: Experiments and Simulations.
    Spann AP; Campbell JE; Fitzgibbon SR; Rodriguez A; Cap AP; Blackbourne LH; Shaqfeh ESG
    Biophys J; 2016 Aug; 111(3):577-588. PubMed ID: 27508441
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels.
    Xiao LL; Liu Y; Chen S; Fu BM
    Biomech Model Mechanobiol; 2017 Apr; 16(2):597-610. PubMed ID: 27738841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The high splenic hematocrit: a rheological consequence of red cell flow through the reticular meshwork.
    MacDonald IC; Schmidt EE; Groom AC
    Microvasc Res; 1991 Jul; 42(1):60-76. PubMed ID: 1921755
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation.
    Mohammadi M; Madadi H; Casals-Terré J; Sellarès J
    Anal Bioanal Chem; 2015 Jun; 407(16):4733-44. PubMed ID: 25925854
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows.
    Ye T; Phan-Thien N; Lim CT; Peng L; Shi H
    Phys Rev E; 2017 Jun; 95(6-1):063314. PubMed ID: 28709282
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel.
    Sherwood JM; Dusting J; Kaliviotis E; Balabani S
    Biomicrofluidics; 2012 Jun; 6(2):24119. PubMed ID: 23667411
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The impact of capillary dilation on the distribution of red blood cells in artificial networks.
    Schmid F; Reichold J; Weber B; Jenny P
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(7):H733-42. PubMed ID: 25617356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.