These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22476845)

  • 1. Electrorheology of graphene oxide.
    Zhang WL; Liu YD; Choi HJ; Kim SG
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2267-72. PubMed ID: 22476845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics.
    Zhang WL; Choi HJ
    Langmuir; 2012 May; 28(17):7055-62. PubMed ID: 22486527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology.
    Liu YD; Fang FF; Choi HJ
    Langmuir; 2010 Aug; 26(15):12849-54. PubMed ID: 20593791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced dielectric polarization and electro-responsive characteristic of graphene oxide-wrapped titania microspheres.
    Yin J; Shui Y; Dong Y; Zhao X
    Nanotechnology; 2014 Jan; 25(4):045702. PubMed ID: 24394540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and facile fabrication of a graphene oxide/titania nanocomposite and its electro-responsive characteristics.
    Zhang WL; Choi HJ
    Chem Commun (Camb); 2011 Dec; 47(45):12286-8. PubMed ID: 22010134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymeric Nanoparticle-Coated Pickering Emulsion-Synthesized Conducting Polyaniline Hybrid Particles and Their Electrorheological Study.
    Jun CS; Kwon SH; Choi HJ; Seo Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44811-44819. PubMed ID: 29193955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions.
    Tilki T; Yavuz M; Karabacak C; Cabuk M; Ulutürk M
    Carbohydr Res; 2010 Mar; 345(5):672-9. PubMed ID: 20116050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optically transparent electrorheological fluid with urea-modified silica nanoparticles and its haptic display application.
    Liu YD; Lee BM; Park TS; Kim JE; Choi HJ; Booh SW
    J Colloid Interface Sci; 2013 Aug; 404():56-61. PubMed ID: 23743046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency.
    Yin J; Wang X; Zhao X
    Nanotechnology; 2015 Feb; 26(6):065704. PubMed ID: 25597819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroresponsive Polymer-Inorganic Semiconducting Composite (MCTP-Fe
    Dong YZ; Kwon SH; Choi HJ; Puthiaraj P; Ahn WS
    ACS Omega; 2018 Dec; 3(12):17246-17253. PubMed ID: 31458340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile fabrication of Pickering emulsion polymerized polystyrene/laponite composite nanoparticles and their electrorheology.
    Kim YJ; Liu YD; Choi HJ; Park SJ
    J Colloid Interface Sci; 2013 Mar; 394():108-14. PubMed ID: 23332941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrorheological Characteristics of Poly(diphenylamine)/magnetite Composite-Based Suspension.
    Dong YZ; Choi HJ
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31505786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Electrorheological Response of Graphene Oxide/Polydiphenylamine Microsheet Composite Particles.
    Gao CY; Kim MH; Jin HJ; Choi HJ
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32878240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation.
    Ko YG; Shin SS; Choi US; Park YS; Woo JW
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior.
    Li Y; Guan Y; Liu Y; Yin J; Zhao X
    Nanotechnology; 2016 May; 27(19):195702. PubMed ID: 27041243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced and Tunable Electrorheological Capability using Surface Initiated Atom Transfer Radical Polymerization Modification with Simultaneous Reduction of the Graphene Oxide by Silyl-Based Polymer Grafting.
    Kutalkova E; Mrlik M; Ilcikova M; Osicka J; Sedlacik M; Mosnacek J
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30813501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microemulsion polymerized polyaniline/montmorillonite nanocomposite and its electrorheology.
    Song DH; Lee HM; Choi HJ
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1501-4. PubMed ID: 19441556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core/shell nanocomposite based on the local polarization and its electrorheological behavior.
    Wang B; Zhao X
    Langmuir; 2005 Jul; 21(14):6553-9. PubMed ID: 15982066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric Field-Responsive Mesoporous Suspensions: A Review.
    Kwon SH; Piao SH; Choi HJ
    Nanomaterials (Basel); 2015 Dec; 5(4):2249-2267. PubMed ID: 28347119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.