BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22477069)

  • 21. TDR Targets 6: driving drug discovery for human pathogens through intensive chemogenomic data integration.
    Urán Landaburu L; Berenstein AJ; Videla S; Maru P; Shanmugam D; Chernomoretz A; Agüero F
    Nucleic Acids Res; 2020 Jan; 48(D1):D992-D1005. PubMed ID: 31680154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Navigating bioactivity space in anti-tubercular drug discovery through the deployment of advanced machine learning models and cheminformatics tools: a molecular modeling based retrospective study.
    Bhowmik R; Kant R; Manaithiya A; Saluja D; Vyas B; Nath R; Qureshi KA; Parkkila S; Aspatwar A
    Front Pharmacol; 2023; 14():1265573. PubMed ID: 37705534
    [No Abstract]   [Full Text] [Related]  

  • 23. An overview of computational life science databases & exchange formats of relevance to chemical biology research.
    Smalter Hall A; Shan Y; Lushington G; Visvanathan M
    Comb Chem High Throughput Screen; 2013 Mar; 16(3):189-98. PubMed ID: 22934944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Chemical Property Position of Bedaquiline Construed by a Chemical Global Positioning System-Natural Product.
    Alajlani MM
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Learning Models for
    Lane TR; Urbina F; Rank L; Gerlach J; Riabova O; Lepioshkin A; Kazakova E; Vocat A; Tkachenko V; Cole S; Makarov V; Ekins S
    Mol Pharm; 2022 Feb; 19(2):674-689. PubMed ID: 34964633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.
    Lane T; Russo DP; Zorn KM; Clark AM; Korotcov A; Tkachenko V; Reynolds RC; Perryman AL; Freundlich JS; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4346-4360. PubMed ID: 29672063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens.
    Naz S; Ngo T; Farooq U; Abagyan R
    PeerJ; 2017; 5():e3765. PubMed ID: 28948099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collaborative drug discovery for More Medicines for Tuberculosis (MM4TB).
    Ekins S; Spektor AC; Clark AM; Dole K; Bunin BA
    Drug Discov Today; 2017 Mar; 22(3):555-565. PubMed ID: 27884746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine Learning Model Analysis and Data Visualization with Small Molecules Tested in a Mouse Model of Mycobacterium tuberculosis Infection (2014-2015).
    Ekins S; Perryman AL; Clark AM; Reynolds RC; Freundlich JS
    J Chem Inf Model; 2016 Jul; 56(7):1332-43. PubMed ID: 27335215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predictive modeling targets thymidylate synthase ThyX in Mycobacterium tuberculosis.
    Djaout K; Singh V; Boum Y; Katawera V; Becker HF; Bush NG; Hearnshaw SJ; Pritchard JE; Bourbon P; Madrid PB; Maxwell A; Mizrahi V; Myllykallio H; Ekins S
    Sci Rep; 2016 Jun; 6():27792. PubMed ID: 27283217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining Metabolite-Based Pharmacophores with Bayesian Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.
    Ekins S; Madrid PB; Sarker M; Li SG; Mittal N; Kumar P; Wang X; Stratton TP; Zimmerman M; Talcott C; Bourbon P; Travers M; Yadav M; Freundlich JS
    PLoS One; 2015; 10(10):e0141076. PubMed ID: 26517557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of a thienopyrimidine antitubercular relying on medicinal chemistry and metabolomics insights.
    Li SG; Vilchèze C; Chakraborty S; Wang X; Kim H; Anisetti M; Ekins S; Rhee KY; Jacobs WR; Freundlich JS
    Tetrahedron Lett; 2015 Jun; 56(23):3246-3250. PubMed ID: 26257441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery.
    Ekins S; de Siqueira-Neto JL; McCall LI; Sarker M; Yadav M; Ponder EL; Kallel EA; Kellar D; Chen S; Arkin M; Bunin BA; McKerrow JH; Talcott C
    PLoS Negl Trop Dis; 2015; 9(6):e0003878. PubMed ID: 26114876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New target prediction and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0.
    Clark AM; Sarker M; Ekins S
    J Cheminform; 2014; 6():38. PubMed ID: 25302078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bigger data, collaborative tools and the future of predictive drug discovery.
    Ekins S; Clark AM; Swamidass SJ; Litterman N; Williams AJ
    J Comput Aided Mol Des; 2014 Oct; 28(10):997-1008. PubMed ID: 24943138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Looking back to the future: predicting in vivo efficacy of small molecules versus Mycobacterium tuberculosis.
    Ekins S; Pottorf R; Reynolds RC; Williams AJ; Clark AM; Freundlich JS
    J Chem Inf Model; 2014 Apr; 54(4):1070-82. PubMed ID: 24665947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bayesian models for screening and TB Mobile for target inference with Mycobacterium tuberculosis.
    Ekins S; Casey AC; Roberts D; Parish T; Bunin BA
    Tuberculosis (Edinb); 2014 Mar; 94(2):162-9. PubMed ID: 24440548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fusing dual-event data sets for Mycobacterium tuberculosis machine learning models and their evaluation.
    Ekins S; Freundlich JS; Reynolds RC
    J Chem Inf Model; 2013 Nov; 53(11):3054-63. PubMed ID: 24144044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining computational methods for hit to lead optimization in Mycobacterium tuberculosis drug discovery.
    Ekins S; Freundlich JS; Hobrath JV; Lucile White E; Reynolds RC
    Pharm Res; 2014 Feb; 31(2):414-35. PubMed ID: 24132686
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.