BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22477622)

  • 1. Protein refolding in peroxisomes is dependent upon an HSF1-regulated function.
    Heldens L; van Genesen ST; Hanssen LL; Hageman J; Kampinga HH; Lubsen NH
    Cell Stress Chaperones; 2012 Sep; 17(5):603-13. PubMed ID: 22477622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-chaperones are limiting in a depleted chaperone network.
    Heldens L; Dirks RP; Hensen SM; Onnekink C; van Genesen ST; Rustenburg F; Lubsen NH
    Cell Mol Life Sci; 2010 Dec; 67(23):4035-48. PubMed ID: 20556630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the antioxidant response in methionine deprived human cells results in an HSF1-independent increase in HSPA1A mRNA levels.
    Hensen SM; Heldens L; van Enckevort CM; van Genesen ST; Pruijn GJ; Lubsen NH
    Biochimie; 2013 Jun; 95(6):1245-51. PubMed ID: 23395854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock factor 1 is inactivated by amino acid deprivation.
    Hensen SM; Heldens L; van Enckevort CM; van Genesen ST; Pruijn GJ; Lubsen NH
    Cell Stress Chaperones; 2012 Nov; 17(6):743-55. PubMed ID: 22797943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hsc70/Hsp40 chaperone system mediates the Hsp90-dependent refolding of firefly luciferase.
    Minami Y; Minami M
    Genes Cells; 1999 Dec; 4(12):721-9. PubMed ID: 10620017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities.
    Hageman J; van Waarde MA; Zylicz A; Walerych D; Kampinga HH
    Biochem J; 2011 Apr; 435(1):127-42. PubMed ID: 21231916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Components of a mammalian protein disaggregation/refolding machine are targeted to nuclear speckles following thermal stress in differentiated human neuronal cells.
    Deane CA; Brown IR
    Cell Stress Chaperones; 2017 Mar; 22(2):191-200. PubMed ID: 27966060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the role of Hsp90 in production of heat shock proteins in motor neurons reveals a suppressive effect of wild-type Hsf1.
    Taylor DM; Tradewell ML; Minotti S; Durham HD
    Cell Stress Chaperones; 2007; 12(2):151-62. PubMed ID: 17688194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular chaperones as HSF1-specific transcriptional repressors.
    Shi Y; Mosser DD; Morimoto RI
    Genes Dev; 1998 Mar; 12(5):654-66. PubMed ID: 9499401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.
    SolĂ­s EJ; Pandey JP; Zheng X; Jin DX; Gupta PB; Airoldi EM; Pincus D; Denic V
    Mol Cell; 2016 Jul; 63(1):60-71. PubMed ID: 27320198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans.
    Krivoruchko A; Storey KB
    J Comp Physiol B; 2010 Mar; 180(3):403-14. PubMed ID: 19834715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both the N- and C-terminal chaperone sites of Hsp90 participate in protein refolding.
    Minami M; Nakamura M; Emori Y; Minami Y
    Eur J Biochem; 2001 Apr; 268(8):2520-4. PubMed ID: 11298772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter.
    Ackerman A; Kijima T; Eguchi T; Prince TL
    Methods Mol Biol; 2023; 2693():1-11. PubMed ID: 37540422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes.
    Ali A; Bharadwaj S; O'Carroll R; Ovsenek N
    Mol Cell Biol; 1998 Sep; 18(9):4949-60. PubMed ID: 9710578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the cochaperone CHIP enhances Hsp70-dependent folding activity in mammalian cells.
    Kampinga HH; Kanon B; Salomons FA; Kabakov AE; Patterson C
    Mol Cell Biol; 2003 Jul; 23(14):4948-58. PubMed ID: 12832480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An atypical unfolded protein response in heat shocked cells.
    Heldens L; Hensen SM; Onnekink C; van Genesen ST; Dirks RP; Lubsen NH
    PLoS One; 2011; 6(8):e23512. PubMed ID: 21853144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of heat shock factor 1 plays a role in pyrrolidine dithiocarbamate-mediated expression of the co-chaperone BAG3.
    Song S; Kole S; Precht P; Pazin MJ; Bernier M
    Int J Biochem Cell Biol; 2010 Nov; 42(11):1856-63. PubMed ID: 20692357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical role for the proteasome activator PA28 in the Hsp90-dependent protein refolding.
    Minami Y; Kawasaki H; Minami M; Tanahashi N; Tanaka K; Yahara I
    J Biol Chem; 2000 Mar; 275(12):9055-61. PubMed ID: 10722756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding and refolding of thermolabile and thermostable bacterial luciferases: the role of DnaKJ heat-shock proteins.
    Manukhov IV; Eroshnikov GE; Vyssokikh MY; Zavilgelsky GB
    FEBS Lett; 1999 Apr; 448(2-3):265-8. PubMed ID: 10218489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinvestigation of the effect of carbenoxolone on the induction of heat shock proteins.
    Kawashima D; Asai M; Katagiri K; Takeuchi R; Ohtsuka K
    Cell Stress Chaperones; 2009 Sep; 14(5):535-43. PubMed ID: 19333787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.