These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 22479147)
1. Decision Tree-Based Classifier Combined with Neural-Based Predictor for Water-Stage Forecasts in a River Basin During Typhoons: A Case Study in Taiwan. Tsai CC; Lu MC; Wei CC Environ Eng Sci; 2012 Feb; 29(2):108-116. PubMed ID: 22479147 [TBL] [Abstract][Full Text] [Related]
2. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Choubin B; Darabi H; Rahmati O; Sajedi-Hosseini F; Kløve B Sci Total Environ; 2018 Feb; 615():272-281. PubMed ID: 28982076 [TBL] [Abstract][Full Text] [Related]
3. Rainfall prediction using multiple inclusive models and large climate indices. Mohamadi S; Sheikh Khozani Z; Ehteram M; Ahmed AN; El-Shafie A Environ Sci Pollut Res Int; 2022 Dec; 29(56):85312-85349. PubMed ID: 35790639 [TBL] [Abstract][Full Text] [Related]
4. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage. Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455 [TBL] [Abstract][Full Text] [Related]
6. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions. Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854 [TBL] [Abstract][Full Text] [Related]
7. Applying artificial neural networks to the diagnosis of organic dyspepsia. García-Altés A; Santín D; Barenys M Stat Methods Med Res; 2007 Aug; 16(4):331-46. PubMed ID: 17715160 [TBL] [Abstract][Full Text] [Related]
8. Prediction Performance Comparison of Risk Management and Control Mode in Regional Sites Based on Decision Tree and Neural Network. Zhu W; He J; Zhang H; Cheng L; Yang X; Wang X; Ji G Front Public Health; 2022; 10():892423. PubMed ID: 35692327 [TBL] [Abstract][Full Text] [Related]
9. Prediction of force measurements of a microbend sensor based on an artificial neural network. Efendioglu HS; Yildirim T; Fidanboylu K Sensors (Basel); 2009; 9(9):7167-76. PubMed ID: 22399991 [TBL] [Abstract][Full Text] [Related]
10. Investigating the management performance of disinfection analysis of water distribution networks using data mining approaches. Zounemat-Kermani M; Ramezani-Charmahineh A; Adamowski J; Kisi O Environ Monit Assess; 2018 Jun; 190(7):397. PubMed ID: 29900478 [TBL] [Abstract][Full Text] [Related]
11. Investigating machine learning models in predicting lake water quality parameters as a 3-year moving average. Gorgan-Mohammadi F; Rajaee T; Zounemat-Kermani M Environ Sci Pollut Res Int; 2023 May; 30(23):63839-63863. PubMed ID: 37059948 [TBL] [Abstract][Full Text] [Related]
12. Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression. Colombet I; Ruelland A; Chatellier G; Gueyffier F; Degoulet P; Jaulent MC Proc AMIA Symp; 2000; ():156-60. PubMed ID: 11079864 [TBL] [Abstract][Full Text] [Related]
13. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Costache R; Tien Bui D Sci Total Environ; 2019 Nov; 691():1098-1118. PubMed ID: 31466192 [TBL] [Abstract][Full Text] [Related]
14. Performance comparison between Logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus. Li CP; Zhi XY; Ma J; Cui Z; Zhu ZL; Zhang C; Hu LP Chin Med J (Engl); 2012 Mar; 125(5):851-7. PubMed ID: 22490586 [TBL] [Abstract][Full Text] [Related]
15. Predicting quality of life after breast cancer surgery using ANN-based models: performance comparison with MR. Tsai JT; Hou MF; Chen YM; Wan TT; Kao HY; Shi HY Support Care Cancer; 2013 May; 21(5):1341-50. PubMed ID: 23203653 [TBL] [Abstract][Full Text] [Related]
16. [Approach to the methodology of classification and regression trees]. Trujillano J; Sarria-Santamera A; Esquerda A; Badia M; Palma M; March J Gac Sanit; 2008; 22(1):65-72. PubMed ID: 18261446 [TBL] [Abstract][Full Text] [Related]
17. The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa. Setshedi KJ; Mutingwende N; Ngqwala NP Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34069195 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal Variation of Sediment Export from Multiple Taiwan Watersheds. Chiang LC; Wang YC; Liao CJ Int J Environ Res Public Health; 2019 May; 16(9):. PubMed ID: 31071953 [TBL] [Abstract][Full Text] [Related]
19. Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models. Taşpınar F J Air Waste Manag Assoc; 2015 Jul; 65(7):800-9. PubMed ID: 26079553 [TBL] [Abstract][Full Text] [Related]
20. Development of river ecosystem models for Flemish watercourses: case studies in the Zwalm river basin. Goethals P; Dedecker A; Raes N; Adriaenssens V; Gabriels W; De Pauw N Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(1):71-86. PubMed ID: 15952431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]