These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22479311)

  • 41. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans.
    Courtine G; Schieppati M
    J Neurophysiol; 2004 Apr; 91(4):1524-35. PubMed ID: 14668296
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamics of quadrupedal locomotion of monkeys: implications for central control.
    Xiang Y; John P; Yakushin SB; Kunin M; Raphan T; Cohen B
    Exp Brain Res; 2007 Mar; 177(4):551-72. PubMed ID: 17006683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptation to unilateral change in lower limb mechanical properties during human walking.
    Noble JW; Prentice SD
    Exp Brain Res; 2006 Mar; 169(4):482-95. PubMed ID: 16328304
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Function dictates the phase dependence of vision during human locomotion.
    Logan D; Ivanenko YP; Kiemel T; Cappellini G; Sylos-Labini F; Lacquaniti F; Jeka JJ
    J Neurophysiol; 2014 Jul; 112(1):165-80. PubMed ID: 24717345
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Do horizontal propulsive forces influence the nonlinear structure of locomotion?
    Kurz MJ; Stergiou N
    J Neuroeng Rehabil; 2007 Aug; 4():30. PubMed ID: 17697386
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Paired nonlinear behavior of active and passive joint torques associated with preparation for walk-to-run gait transition.
    Pan J; Zhang S; Li L
    J Electromyogr Kinesiol; 2021 Apr; 57():102527. PubMed ID: 33530026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions.
    Hollman JH; Watkins MK; Imhoff AC; Braun CE; Akervik KA; Ness DK
    Gait Posture; 2016 Jan; 43():204-9. PubMed ID: 26481257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatiotemporal gait characteristics and ankle kinematics of backward walking in people with chronic ankle instability.
    Balasukumaran T; Gottlieb U; Springer S
    Sci Rep; 2020 Jul; 10(1):11515. PubMed ID: 32661274
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.
    Lerner ZF; Damiano DL; Bulea TC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporospatial and kinematic gait alterations during treadmill walking with body weight suspension.
    Threlkeld AJ; Cooper LD; Monger BP; Craven AN; Haupt HG
    Gait Posture; 2003 Jun; 17(3):235-45. PubMed ID: 12770637
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Compensation of stochastic time-continuous perturbations during walking in healthy young adults: An analysis of the structure of gait variability.
    Koch M; Eckardt N; Zech A; Hamacher D
    Gait Posture; 2020 Jul; 80():253-259. PubMed ID: 32559644
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The timing of locomotor propulsion in healthy adults walking at multiple speeds.
    Kuhman D; Hurt CP
    Hum Mov Sci; 2019 Dec; 68():102524. PubMed ID: 31733429
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hemiparetic stepping to the beat: asymmetric response to metronome phase shift during treadmill gait.
    Pelton TA; Johannsen L; Huiya Chen ; Wing AM
    Neurorehabil Neural Repair; 2010 Jun; 24(5):428-34. PubMed ID: 19952366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unique controlling mechanisms underlying walking with two handheld poles in contrast to those of conventional walking as revealed by split-belt locomotor adaptation.
    Obata H; Ogawa T; Nakazawa K
    Exp Brain Res; 2019 Jul; 237(7):1699-1707. PubMed ID: 30997538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of slipping-like perturbation intensity on the dynamical stability.
    Aprigliano F; Martelli D; Tropea P; Micera S; Monaco V
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5295-8. PubMed ID: 26737486
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The motor and the brake of the trailing leg in human walking: leg force control through ankle modulation and knee covariance.
    Toney ME; Chang YH
    Exp Brain Res; 2016 Oct; 234(10):3011-23. PubMed ID: 27334888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of direction and speed on treadmill walking in typically developing children.
    Henderson G; Ferreira D; Wu J
    Gait Posture; 2021 Feb; 84():169-174. PubMed ID: 33341463
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach.
    Nooijen CF; Ter Hoeve N; Field-Fote EC
    J Neuroeng Rehabil; 2009 Oct; 6():36. PubMed ID: 19799783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.