These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22479634)

  • 1. Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly.
    Williams CM; Marshall KE; MacMillan HA; Dzurisin JD; Hellmann JJ; Sinclair BJ
    PLoS One; 2012; 7(3):e34470. PubMed ID: 22479634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking energetics and overwintering in temperate insects.
    Sinclair BJ
    J Therm Biol; 2015 Dec; 54():5-11. PubMed ID: 26615721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local thermal environment and warming influence supercooling and drive widespread shifts in the metabolome of diapausing Pieris rapae butterflies.
    Mikucki EE; Lockwood BL
    J Exp Biol; 2021 Nov; 224(22):. PubMed ID: 34694403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivity and the passive slowing effect of cold on resting metabolism as the primary drivers of energy savings in overwintering fishes.
    Reeve C; Rowsey LE; Speers-Roesch B
    J Exp Biol; 2022 Apr; 225(8):. PubMed ID: 35315489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insect Development, Thermal Plasticity and Fitness Implications in Changing, Seasonal Environments.
    Buckley LB; Arakaki AJ; Cannistra AF; Kharouba HM; Kingsolver JG
    Integr Comp Biol; 2017 Nov; 57(5):988-998. PubMed ID: 28662575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of incorporating natural thermal variation when evaluating physiological performance in wild species.
    Morash AJ; Neufeld C; MacCormack TJ; Currie S
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 30037965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global metabolic impacts of recent climate warming.
    Dillon ME; Wang G; Huey RB
    Nature; 2010 Oct; 467(7316):704-6. PubMed ID: 20930843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use.
    Sinclair BJ; Stinziano JR; Williams CM; Macmillan HA; Marshall KE; Storey KB
    J Exp Biol; 2013 Jan; 216(Pt 2):292-302. PubMed ID: 23255194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of seasonal and annual heat accumulation for population dynamics of an invasive defoliator.
    Ward SF; Moon RD; Aukema BH
    Oecologia; 2019 Jul; 190(3):703-714. PubMed ID: 31292715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate Warming, Resource Availability, and the Metabolic Meltdown of Ectotherms.
    Huey RB; Kingsolver JG
    Am Nat; 2019 Dec; 194(6):E140-E150. PubMed ID: 31738103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change.
    Davies WJ
    Ecology; 2019 Apr; 100(4):e02612. PubMed ID: 30636278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three questions about the eco-physiology of overwintering underground.
    Huey RB; Ma L; Levy O; Kearney MR
    Ecol Lett; 2021 Feb; 24(2):170-185. PubMed ID: 33289263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microclimate buffering and thermal tolerance across elevations in a tropical butterfly.
    Montejo-Kovacevich G; Martin SH; Meier JI; Bacquet CN; Monllor M; Jiggins CD; Nadeau NJ
    J Exp Biol; 2020 Apr; 223(Pt 8):. PubMed ID: 32165433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The benefit of being still: energy savings during winter dormancy in fish come from inactivity and the cold, not from metabolic rate depression.
    Speers-Roesch B; Norin T; Driedzic WR
    Proc Biol Sci; 2018 Sep; 285(1886):. PubMed ID: 30185640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grasshopper species' seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change.
    Buckley LB; Graham SI; Nufio CR
    J Anim Ecol; 2021 May; 90(5):1252-1263. PubMed ID: 33630307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Winter chilling speeds spring development of temperate butterflies.
    Stålhandske S; Gotthard K; Leimar O
    J Anim Ecol; 2017 Jul; 86(4):718-729. PubMed ID: 28466477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low winter precipitation, but not warm autumns and springs, threatens mountain butterflies in middle-high mountains.
    Konvicka M; Kuras T; Liparova J; Slezak V; Horázná D; Klečka J; Kleckova I
    PeerJ; 2021; 9():e12021. PubMed ID: 34532158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germination responses to winter warm spells and warming vary widely among woody plants in a temperate forest.
    Flanigan NP; Bandara R; Wang F; Jastrzębowski S; Hidayati SN; Walck JL
    Plant Biol (Stuttg); 2020 Nov; 22(6):1052-1061. PubMed ID: 32594604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason.
    Güsewell S; Furrer R; Gehrig R; Pietragalla B
    Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.