BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22480161)

  • 1. Bias-stress effect in 1,2-ethanedithiol-treated PbS quantum dot field-effect transistors.
    Osedach TP; Zhao N; Andrew TL; Brown PR; Wanger DD; Strasfeld DB; Chang LY; Bawendi MG; Bulović V
    ACS Nano; 2012 Apr; 6(4):3121-7. PubMed ID: 22480161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density.
    Panzer MJ; Frisbie CD
    J Am Chem Soc; 2007 May; 129(20):6599-607. PubMed ID: 17472381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors.
    Zhang Y; Chen Q; Alivisatos AP; Salmeron M
    Nano Lett; 2015 Jul; 15(7):4657-63. PubMed ID: 26099508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of the bias-stress effect in ligand-free quantum dot field-effect transistors.
    Tolentino J; Gibbs M; Abelson A; Law M
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37503849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triggered aggregation of PbS nanocrystal dispersions; towards directing the morphology of hybrid polymer films using a removable bilinker ligand.
    Rhodes R; O'Brien P; Saunders BR
    J Colloid Interface Sci; 2011 Jun; 358(1):151-9. PubMed ID: 21453925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids.
    Zarghami MH; Liu Y; Gibbs M; Gebremichael E; Webster C; Law M
    ACS Nano; 2010 Apr; 4(4):2475-85. PubMed ID: 20359235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the source-drain current and gate leakage current to understand the graphene field-effect transistors.
    Yu C; Liu H; Ni W; Gao N; Zhao J; Zhang H
    Phys Chem Chem Phys; 2011 Feb; 13(8):3461-7. PubMed ID: 21240394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of high performance/highly functional field-effect transistor devices based on [6]phenacene thin films.
    Eguchi R; He X; Hamao S; Goto H; Okamoto H; Gohda S; Sato K; Kubozono Y
    Phys Chem Chem Phys; 2013 Dec; 15(47):20611-7. PubMed ID: 24185947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules.
    Nugraha MI; Kumagai S; Watanabe S; Sytnyk M; Heiss W; Loi MA; Takeya J
    ACS Appl Mater Interfaces; 2017 May; 9(21):18039-18045. PubMed ID: 28472887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon quantum dot-based field-effect transistors and their ligand length-dependent carrier mobility.
    Kwon W; Do S; Won DC; Rhee SW
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):822-7. PubMed ID: 23323938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-Transport Mechanisms in CuInSe
    Yun HJ; Lim J; Fuhr AS; Makarov NS; Keene S; Law M; Pietryga JM; Klimov VI
    ACS Nano; 2018 Dec; 12(12):12587-12596. PubMed ID: 30495927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge trapping in bright and dark states of coupled PbS quantum dot films.
    Gao J; Johnson JC
    ACS Nano; 2012 Apr; 6(4):3292-303. PubMed ID: 22462777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability.
    Guo X; Ortiz RP; Zheng Y; Hu Y; Noh YY; Baeg KJ; Facchetti A; Marks TJ
    J Am Chem Soc; 2011 Feb; 133(5):1405-18. PubMed ID: 21207965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence.
    Gao J; Zhang J; van de Lagemaat J; Johnson JC; Beard MC
    ACS Nano; 2014 Dec; 8(12):12814-25. PubMed ID: 25485555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DC modeling and the source of flicker noise in passivated carbon nanotube transistors.
    Kim S; Kim S; Janes DB; Mohammadi S; Back J; Shim M
    Nanotechnology; 2010 Sep; 21(38):385203. PubMed ID: 20798468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the electrode materials on the drain-bias stress instabilities of In-Ga-Zn-O thin-film transistors.
    Bak JY; Yang S; Ryu MK; Ko Park SH; Hwang CS; Yoon SM
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5369-74. PubMed ID: 22974265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenacyl-thiophene and quinone semiconductors designed for solution processability and air-stability in high mobility n-channel field-effect transistors.
    Letizia JA; Cronin S; Ortiz RP; Facchetti A; Ratner MA; Marks TJ
    Chemistry; 2010 Feb; 16(6):1911-28. PubMed ID: 20039340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors.
    Cho K; Park W; Park J; Jeong H; Jang J; Kim TY; Hong WK; Hong S; Lee T
    ACS Nano; 2013 Sep; 7(9):7751-8. PubMed ID: 23924186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Black Phosphorus/Zero-Dimensional Quantum Dot Phototransistors: Tunable Photodoping and Enhanced Photoresponsivity.
    Lee AY; Ra HS; Kwak DH; Jeong MH; Park JH; Kang YS; Chae WS; Lee JS
    ACS Appl Mater Interfaces; 2018 May; 10(18):16033-16040. PubMed ID: 29649868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.