These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 22480241)
1. Exciton band structure in bacterial peripheral light-harvesting complexes. Trinkunas G; Zerlauskiene O; Urbonienė V; Chmeliov J; Gall A; Robert B; Valkunas L J Phys Chem B; 2012 May; 116(17):5192-8. PubMed ID: 22480241 [TBL] [Abstract][Full Text] [Related]
2. Static and dynamic protein impact on electronic properties of light-harvesting complex LH2. Zerlauskiene O; Trinkunas G; Gall A; Robert B; Urboniene V; Valkunas L J Phys Chem B; 2008 Dec; 112(49):15883-92. PubMed ID: 19367872 [TBL] [Abstract][Full Text] [Related]
3. Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Koolhaus MH; Frese RN; Fowler GJ; Bibby TS; Georgakopoulou S; van der Zwan G; Hunter CN; van Grondelle R Biochemistry; 1998 Apr; 37(14):4693-8. PubMed ID: 9548732 [TBL] [Abstract][Full Text] [Related]
4. Davydov splitting of excitons in cyclic bacteriochlorophyll a nanoaggregates of bacterial light-harvesting complexes between 4.5 and 263 K. Pajusalu M; Rätsep M; Trinkunas G; Freiberg A Chemphyschem; 2011 Feb; 12(3):634-44. PubMed ID: 21275034 [TBL] [Abstract][Full Text] [Related]
5. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides. Polívka T; Niedzwiedzki D; Fuciman M; Sundström V; Frank HA J Phys Chem B; 2007 Jun; 111(25):7422-31. PubMed ID: 17547450 [TBL] [Abstract][Full Text] [Related]
6. Excitons in the LH3 complexes from purple bacteria. Chmeliov J; Songaila E; Rancova O; Gall A; Robert B; Abramavicius D; Valkunas L J Phys Chem B; 2013 Sep; 117(38):11058-68. PubMed ID: 23570515 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen bonding and circular dichroism of bacteriochlorophylls in the Rhodobacter capsulatus light-harvesting 2 complex altered by combinatorial mutagenesis. Hu Q; Sturgis JN; Robert B; Delagrave S; Youvan DC; Niederman RA Biochemistry; 1998 Jul; 37(28):10006-15. PubMed ID: 9665706 [TBL] [Abstract][Full Text] [Related]
8. The role of betaArg-10 in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides. Fowler GJ; Hess S; Pullerits T; Sundström V; Hunter CN Biochemistry; 1997 Sep; 36(37):11282-91. PubMed ID: 9287171 [TBL] [Abstract][Full Text] [Related]
9. Carotenoid-to-(bacterio)chlorophyll energy transfer in LH2 antenna complexes from Rba. sphaeroides reconstituted with non-native (bacterio)chlorophylls. Niedzwiedzki DM; Swainsbury DJK; Hunter CN Photosynth Res; 2020 May; 144(2):155-169. PubMed ID: 31350671 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence micro-spectroscopy study of individual photosynthetic membrane vesicles and light-harvesting complexes. Leiger K; Reisberg L; Freiberg A J Phys Chem B; 2013 Aug; 117(32):9315-26. PubMed ID: 23859536 [TBL] [Abstract][Full Text] [Related]
11. Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system. Bruggemann B; May V J Chem Phys; 2004 Feb; 120(5):2325-36. PubMed ID: 15268371 [TBL] [Abstract][Full Text] [Related]
12. Effect of the in situ electrochemical oxidation on the pigment-protein arrangement and energy transfer in light-harvesting complex from Rhodobacter sphaeroides 601. Liu W; Lu Y; Liu Y; Liu K; Yan Y; Kong J; Xu C; Qian S Biochem Biophys Res Commun; 2006 Feb; 340(2):505-11. PubMed ID: 16380087 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the effects of different carotenoids on the absorption and CD signals of light harvesting 1 complexes. Georgakopoulou S; van der Zwan G; Olsen JD; Hunter CN; Niederman RA; van Grondelle R J Phys Chem B; 2006 Feb; 110(7):3354-61. PubMed ID: 16494350 [TBL] [Abstract][Full Text] [Related]
14. Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2. Urboniene V; Vrublevskaja O; Trinkunas G; Gall A; Robert B; Valkunas L Biophys J; 2007 Sep; 93(6):2188-98. PubMed ID: 17513366 [TBL] [Abstract][Full Text] [Related]
15. Generation of triplet and cation-radical bacteriochlorophyll a in carotenoidless LH1 and LH2 antenna complexes from Rhodobacter sphaeroides. Limantara L; Fujii R; Zhang JP; Kakuno T; Hara H; Kawamori A; Yagura T; Cogdell RJ; Koyama Y Biochemistry; 1998 Dec; 37(50):17469-86. PubMed ID: 9860862 [TBL] [Abstract][Full Text] [Related]
16. Reversible Changes in the Structural Features of Photosynthetic Light-Harvesting Complex 2 by Removal and Reconstitution of B800 Bacteriochlorophyll a Pigments. Saga Y; Hirota K; Asakawa H; Takao K; Fukuma T Biochemistry; 2017 Jul; 56(27):3484-3491. PubMed ID: 28657308 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast carotenoid band shifts probe structure and dynamics in photosynthetic antenna complexes. Herek JL; Polívka T; Pullerits T; Fowler GJ; Hunter CN; Sundström V Biochemistry; 1998 May; 37(20):7057-61. PubMed ID: 9585514 [TBL] [Abstract][Full Text] [Related]
18. Temperature-dependent behavior of bacteriochlorophyll and bacteriopheophytin in the photosynthetic reaction center from Rhodobacter sphaeroides. Ivancich A; Lutz M; Mattioli TA Biochemistry; 1997 Mar; 36(11):3242-53. PubMed ID: 9116002 [TBL] [Abstract][Full Text] [Related]
19. Theoretical prediction of spectral and optical properties of bacteriochlorophylls in thermally disordered LH2 antenna complexes. Janosi L; Kosztin I; Damjanović A J Chem Phys; 2006 Jul; 125(1):014903. PubMed ID: 16863329 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence-excitation and emission spectra from LH2 antenna complexes of Rhodopseudomonas acidophila as a function of the sample preparation conditions. Kunz R; Timpmann K; Southall J; Cogdell RJ; Köhler J; Freiberg A J Phys Chem B; 2013 Oct; 117(40):12020-9. PubMed ID: 24033126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]