BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22480266)

  • 1. Preparation, characterization, sterility validation, and in vitro cell toxicity studies of microemulsions possessing potential parenteral applications.
    Nesamony J; Zachar CL; Jung R; Williams FE; Nauli S
    Drug Dev Ind Pharm; 2013 Feb; 39(2):240-51. PubMed ID: 22480266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: development, physico-chemical characterization and in vitro evaluation.
    Nesamony J; Shah IS; Kalra A; Jung R
    Drug Dev Ind Pharm; 2014 Sep; 40(9):1253-63. PubMed ID: 23837519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B.
    Pestana KC; Formariz TP; Franzini CM; Sarmento VH; Chiavacci LA; Scarpa MV; Egito ES; Oliveira AG
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):253-9. PubMed ID: 18676122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IPM/DOSS/water microemulsions as reactors for silver sulfadiazine nanocrystal synthesis.
    Nesamony J; Kolling WM
    J Pharm Sci; 2005 Jun; 94(6):1310-20. PubMed ID: 15858855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of oil-in-water microemulsions for the oral delivery of amphotericin B.
    Silva AE; Barratt G; Chéron M; Egito ES
    Int J Pharm; 2013 Oct; 454(2):641-8. PubMed ID: 23726904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AOT water-in-oil microemulsions as a penetration enhancer in transdermal drug delivery of 5-fluorouracil.
    Gupta RR; Jain SK; Varshney M
    Colloids Surf B Biointerfaces; 2005 Mar; 41(1):25-32. PubMed ID: 15698753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyglycerol fatty acid ester surfactant-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterisation, in vitro release and penetration investigation.
    Sahle FF; Metz H; Wohlrab J; Neubert RH
    Eur J Pharm Biopharm; 2012 Sep; 82(1):139-50. PubMed ID: 22691416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analytical GC-MS method to quantify methyl dihydrojasmonate in biocompatible oil-in-water microemulsions: physicochemical characterization and in vitro release studies.
    da Silva GBRF; Alécio AC; Scarpa MVC; do Egito EST; Sequinel R; Hatanaka RR; Oliveira JE; Oliveira AG
    Pharm Dev Technol; 2018 Feb; 23(2):151-157. PubMed ID: 28565943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the microstructure of nonionic microemulsions with ethyl oleate by viscosity, ROESY, DLS, SANS, and cyclic voltammetry.
    Kaur G; Chiappisi L; Prévost S; Schweins R; Gradzielski M; Mehta SK
    Langmuir; 2012 Jul; 28(29):10640-52. PubMed ID: 22720716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components.
    Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T
    Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microemulsion formulations for the transdermal delivery of testosterone.
    Hathout RM; Woodman TJ; Mansour S; Mortada ND; Geneidi AS; Guy RH
    Eur J Pharm Sci; 2010 Jun; 40(3):188-96. PubMed ID: 20304048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of oil phase lipophilicity on in vitro drug release from o/w microemulsions with low surfactant content.
    Montenegro L; Carbone C; Condorelli G; Drago R; Puglisi G
    Drug Dev Ind Pharm; 2006 Jun; 32(5):539-48. PubMed ID: 16720409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of water-in-oil microemulsion for oral delivery of earthworm fibrinolytic enzyme.
    Cheng MB; Wang JC; Li YH; Liu XY; Zhang X; Chen DW; Zhou SF; Zhang Q
    J Control Release; 2008 Jul; 129(1):41-8. PubMed ID: 18474405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ phase transition from microemulsion to liquid crystal with the potential of prolonged parenteral drug delivery.
    Ren X; Svirskis D; Alany RG; Zargar-Shoshtari S; Wu Z
    Int J Pharm; 2012 Jul; 431(1-2):130-7. PubMed ID: 22548845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of microstructures formed in isopropyl palmitate/water/Aerosol OT:1-butanol (2:1) system.
    Boonme P; Krauel K; Graf A; Rades T; Junyaprasert VB
    Pharmazie; 2006 Nov; 61(11):927-32. PubMed ID: 17152985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of microemulsions as prolonged-release injectables through in-situ phase transition.
    Wu Z; Alany RG; Tawfeek N; Falconer J; Zhang W; Hassan IM; Rutland M; Svirskis D
    J Control Release; 2014 Jan; 174():188-94. PubMed ID: 24316265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro release of diclofenac diethylamine from caprylocaproyl macrogolglycerides based microemulsions.
    Djordjevic L; Primorac M; Stupar M
    Int J Pharm; 2005 May; 296(1-2):73-9. PubMed ID: 15885457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microemulsions for dermal drug delivery studied by dynamic light scattering: effect of interparticle interactions in oil-in-water microemulsions.
    Shukla A; Janich M; Jahn K; Neubert RH
    J Pharm Sci; 2003 Apr; 92(4):730-8. PubMed ID: 12661059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: effect of phase transition.
    El Maghraby GM
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):595-600. PubMed ID: 19892531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.