These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 22480372)

  • 1. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.
    Meslamani J; Li J; Sutter J; Stevens A; Bertrand HO; Rognan D
    J Chem Inf Model; 2012 Apr; 52(4):943-55. PubMed ID: 22480372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand aligning method for molecular docking: alignment of property-weighted vectors.
    Joung JY; Nam KY; Cho KH; No KT
    J Chem Inf Model; 2012 Apr; 52(4):984-95. PubMed ID: 22471323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based virtual screening for novel ligands.
    Pitt WR; Calmiano MD; Kroeplien B; Taylor RD; Turner JP; King MA
    Methods Mol Biol; 2013; 1008():501-19. PubMed ID: 23729265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a rule-based method for the assessment of protein druggability.
    Perola E; Herman L; Weiss J
    J Chem Inf Model; 2012 Apr; 52(4):1027-38. PubMed ID: 22448735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification.
    Islam MA; Pillay TS
    J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular fields in ligand discovery.
    Gane PJ; Chan AW
    Methods Mol Biol; 2013; 1008():479-99. PubMed ID: 23729264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extensive and diverse set of molecular overlays for the validation of pharmacophore programs.
    Giangreco I; Cosgrove DA; Packer MJ
    J Chem Inf Model; 2013 Apr; 53(4):852-66. PubMed ID: 23565904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement.
    Pala D; Beuming T; Sherman W; Lodola A; Rivara S; Mor M
    J Chem Inf Model; 2013 Apr; 53(4):821-35. PubMed ID: 23541165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study on the use of docking and Bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes.
    Kombo DC; Bencherif M
    J Chem Inf Model; 2013 Dec; 53(12):3212-22. PubMed ID: 24328365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognizing pitfalls in virtual screening: a critical review.
    Scior T; Bender A; Tresadern G; Medina-Franco JL; Martínez-Mayorga K; Langer T; Cuanalo-Contreras K; Agrafiotis DK
    J Chem Inf Model; 2012 Apr; 52(4):867-81. PubMed ID: 22435959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New strategy for receptor-based pharmacophore query construction: a case study for 5-HT₇ receptor ligands.
    Kurczab R; Bojarski AJ
    J Chem Inf Model; 2013 Dec; 53(12):3233-43. PubMed ID: 24245803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design.
    Du QS; Gao J; Wei YT; Du LQ; Wang SQ; Huang RB
    J Chem Inf Model; 2012 Apr; 52(4):996-1004. PubMed ID: 22480344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.
    Sato T; Yuki H; Takaya D; Sasaki S; Tanaka A; Honma T
    J Chem Inf Model; 2012 Apr; 52(4):1015-26. PubMed ID: 22424085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein pharmacophore selection using hydration-site analysis.
    Hu B; Lill MA
    J Chem Inf Model; 2012 Apr; 52(4):1046-60. PubMed ID: 22397751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations.
    Dixit A; Verkhivker GM
    J Chem Inf Model; 2012 Oct; 52(10):2501-15. PubMed ID: 22992037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches.
    Bhunia SS; Roy KK; Saxena AK
    J Chem Inf Model; 2011 Aug; 51(8):1966-85. PubMed ID: 21761917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of MM-PBSA rescoring of docking poses.
    Thompson DC; Humblet C; Joseph-McCarthy D
    J Chem Inf Model; 2008 May; 48(5):1081-91. PubMed ID: 18465849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.