These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 22480944)
1. Theoretical and experimental characterisation of magnetic microbubbles. Mulvana H; Eckersley RJ; Tang MX; Pankhurst Q; Stride E Ultrasound Med Biol; 2012 May; 38(5):864-75. PubMed ID: 22480944 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the effects of microbubble shell disruption on population scattering and implications for modeling contrast agent behavior. Chien CT; Burns PN IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):286-92. PubMed ID: 15128215 [TBL] [Abstract][Full Text] [Related]
3. Study on the multiple scattering effects of ultrasound contrast agents. Chen J; Zhu Z Ultrasonics; 2006 Dec; 44 Suppl 1():e115-8. PubMed ID: 16854444 [TBL] [Abstract][Full Text] [Related]
4. The effect of binding on the subharmonic emissions from individual lipid-encapsulated microbubbles at transmit frequencies of 11 and 25 MHz. Helfield BL; Cherin E; Foster FS; Goertz DE Ultrasound Med Biol; 2013 Feb; 39(2):345-59. PubMed ID: 23219039 [TBL] [Abstract][Full Text] [Related]
5. A dual-frequency excitation technique for enhancing the sub-harmonic emission from encapsulated microbubbles. Zhang D; Xi X; Zhang Z; Gong X; Chen G; Wu J Phys Med Biol; 2009 Jul; 54(13):4257-72. PubMed ID: 19531846 [TBL] [Abstract][Full Text] [Related]
6. The influence of acoustic transmit parameters on the destruction of contrast microbubbles in vitro. Shi WT; Forsberg F; Vaidyanathan P; Tornes A; Ă˜stensen J; Goldberg BB Phys Med Biol; 2006 Aug; 51(16):4031-45. PubMed ID: 16885622 [TBL] [Abstract][Full Text] [Related]
7. Modeling photothermal and acoustical induced microbubble generation and growth. Krasovitski B; Kislev H; Kimmel E Ultrasonics; 2007 Dec; 47(1-4):90-101. PubMed ID: 17910969 [TBL] [Abstract][Full Text] [Related]
8. Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent. Casciaro S; Palmizio Errico R; Conversano F; Demitri C; Distante A Invest Radiol; 2007 Feb; 42(2):95-104. PubMed ID: 17220727 [TBL] [Abstract][Full Text] [Related]
9. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions. Kang ST; Huang YL; Yeh CK Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748 [TBL] [Abstract][Full Text] [Related]
10. Microbubble characterization through acoustically induced deflation. Guidi F; Vos HJ; Mori R; de Jong N; Tortoli P IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):193-202. PubMed ID: 20040446 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields. Stride E; Porter C; Prieto AG; Pankhurst Q Ultrasound Med Biol; 2009 May; 35(5):861-8. PubMed ID: 19282096 [TBL] [Abstract][Full Text] [Related]
12. High frequency attenuation measurements of lipid encapsulated contrast agents. Goertz DE; Frijlink ME; Voormolen MM; de Jong N; van der Steen AF Ultrasonics; 2006 Dec; 44 Suppl 1():e131-4. PubMed ID: 16843511 [TBL] [Abstract][Full Text] [Related]
13. Single-particle optical sizing of microbubbles. Satinover SJ; Dove JD; Borden MA Ultrasound Med Biol; 2014 Jan; 40(1):138-47. PubMed ID: 24139917 [TBL] [Abstract][Full Text] [Related]
14. Radial modulation of single microbubbles. Emmer M; Vos HJ; Versluis M; de Jong N IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2370-9. PubMed ID: 19942524 [TBL] [Abstract][Full Text] [Related]
15. Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation. Chen S; Kinnick R; Greenleaf JF; Fatemi M Ultrasonics; 2006 Dec; 44 Suppl 1():e123-6. PubMed ID: 16930662 [TBL] [Abstract][Full Text] [Related]
16. Concomitance in single bubble sonoluminescence of period doubling in emission and shape distortion. Levinsen MT Ultrasonics; 2014 Feb; 54(2):637-43. PubMed ID: 24074749 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging. Tang MX; Eckersley RJ IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2406-15. PubMed ID: 17186923 [TBL] [Abstract][Full Text] [Related]
18. Dynamic manipulation of the subharmonic scattering of phospholipid-coated microbubbles. Faez T; Renaud G; Defontaine M; Calle S; de Jong N Phys Med Biol; 2011 Oct; 56(19):6459-73. PubMed ID: 21934190 [TBL] [Abstract][Full Text] [Related]
20. The onset of microbubble vibration. Emmer M; van Wamel A; Goertz DE; de Jong N Ultrasound Med Biol; 2007 Jun; 33(6):941-9. PubMed ID: 17451868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]