These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22481003)

  • 1. Reprocessed polylactide: studies of thermo-oxidative decomposition.
    Badia JD; Santonja-Blasco L; Martínez-Felipe A; Ribes-Greus A
    Bioresour Technol; 2012 Jun; 114():622-8. PubMed ID: 22481003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A methodology to assess the energetic valorization of bio-based polymers from the packaging industry: pyrolysis of reprocessed polylactide.
    Badia JD; Santonja-Blasco L; Martínez-Felipe A; Ribes-Greus A
    Bioresour Technol; 2012 May; 111():468-75. PubMed ID: 22386199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between isothermal cold and melt crystallization of polylactide/clay nanocomposites.
    Wu D; Wu L; Wu L; Xu B; Zhang Y; Zhang M
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1658-68. PubMed ID: 18572563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of poly(lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer.
    Beltrán FR; Barrio I; Lorenzo V; Del Río B; Martínez Urreaga J; de la Orden MU
    Waste Manag Res; 2019 Feb; 37(2):135-141. PubMed ID: 30204060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of density and environmental factors on decomposition kinetics of amorphous polylactide - Reactive molecular dynamics studies.
    Mlyniec A; Ekiert M; Morawska-Chochol A; Uhl T
    J Mol Graph Model; 2016 Jun; 67():54-61. PubMed ID: 27183037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres.
    Chandrasekaran SR; Hopke PK
    Bioresour Technol; 2012 Dec; 125():52-8. PubMed ID: 23026316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloramphenicol loaded polylactide melt electrospun scaffolds for biomedical applications.
    Valenti S; Del Valle L; Yousefzade O; Macovez R; Franco L; Puiggalí J
    Int J Pharm; 2021 Sep; 606():120897. PubMed ID: 34293473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biopolyester-based systems containing naturally occurring compounds with enhanced thermo-oxidative stability.
    Arrigo R; Morici E; Dintcheva NT
    J Appl Biomater Funct Mater; 2016 Nov; 14(4):e455-e462. PubMed ID: 27716869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological and thermal properties of polylactide/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R
    J Food Sci; 2010 Mar; 75(2):N17-24. PubMed ID: 20492249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion.
    Zhou C; Liu G; Cheng S; Fang T; Lam PK
    Bioresour Technol; 2014 Aug; 166():243-51. PubMed ID: 24914998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R; Hwang SW
    J Food Sci; 2010 Oct; 75(8):N97-108. PubMed ID: 21535511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures.
    Bhardwaj R; Mohanty AK
    Biomacromolecules; 2007 Aug; 8(8):2476-84. PubMed ID: 17605464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics.
    Chen J; Wang Y; Lang X; Ren X; Fan S
    Bioresour Technol; 2017 Nov; 243():37-46. PubMed ID: 28651137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bioresorbable, polylactide reservoir for diffusional and osmotically controlled drug delivery.
    Jonnalagadda S; Robinson DH
    AAPS PharmSciTech; 2000 Oct; 1(4):E29. PubMed ID: 14727894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of the thermal processing of silica and organosilica.
    Kappert EJ; Bouwmeester HJ; Benes NE; Nijmeijer A
    J Phys Chem B; 2014 May; 118(19):5270-7. PubMed ID: 24754674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation Behavior of Polypropylene during Reprocessing and Its Biocomposites: Thermal and Oxidative Degradation Kinetics.
    Esmizadeh E; Tzoganakis C; Mekonnen TH
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32707872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of poly(L-lactide) blends and biodegradation by Lentzea waywayandensis.
    Nair NR; Nampoothiri KM; Pandey A
    Biotechnol Lett; 2012 Nov; 34(11):2031-5. PubMed ID: 22798041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P; Ledakowicz S
    Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.