These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22481125)

  • 1. Effects of single-fracture aperture statistics on entrapment, dissolution and source depletion behavior of dense non-aqueous phase liquids.
    Yang Z; Niemi A; Fagerlund F; Illangasekare T
    J Contam Hydrol; 2012 May; 133():1-16. PubMed ID: 22481125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution of dense non-aqueous phase liquids in vertical fractures: effect of finger residuals and dead-end pools.
    Yang Z; Niemi A; Fagerlund F; Illangasekare T; Detwiler RL
    J Contam Hydrol; 2013 Jun; 149():88-99. PubMed ID: 23608741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer.
    Maji R; Sudicky EA
    J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dense nonaqueous phase liquid architecture and dissolution in discretely fractured sandstone blocks.
    Schaefer CE; Callaghan AV; King JD; McCray JE
    Environ Sci Technol; 2009 Mar; 43(6):1877-83. PubMed ID: 19368186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal evolution of DNAPL source and contaminant flux distribution: impacts of source mass depletion.
    Basu NB; Rao PS; Falta RW; Annable MD; Jawitz JW; Hatfield K
    J Contam Hydrol; 2008 Jan; 95(3-4):93-109. PubMed ID: 17905471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of mass depletion-mass flux reduction relationships during pumping to determine source zone mass of a reactive brominated-solvent DNAPL.
    Johnston CD; Davis GB; Bastow TP; Annable MD; Trefry MG; Furness A; Geste Y; Woodbury RJ; Rao PS; Rhodes S
    J Contam Hydrol; 2013 Jan; 144(1):122-37. PubMed ID: 23247401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.
    Seyedabbasi MA; Newell CJ; Adamson DT; Sale TC
    J Contam Hydrol; 2012 Jun; 134-135():69-81. PubMed ID: 22591740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dense Nonaqueous-Phase Liquid Architecture in Fractured Bedrock: Implications for Treatment and Plume Longevity.
    Schaefer CE; White EB; Lavorgna GM; Annable MD
    Environ Sci Technol; 2016 Jan; 50(1):207-13. PubMed ID: 26619000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical examination of the factors controlling DNAPL migration through a single fracture.
    Reynolds DA; Kueper BH
    Ground Water; 2002; 40(4):368-77. PubMed ID: 12113355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaugmentation for treatment of dense non-aqueous phase liquid in fractured sandstone blocks.
    Schaefer CE; Towne RM; Vainberg S; McCray JE; Steffan RJ
    Environ Sci Technol; 2010 Jul; 44(13):4958-64. PubMed ID: 20524648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV
    J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydraulic displacement of dense nonaqueous phase liquids for source zone stabilization.
    Alexandra R; Gerhard JI; Kueper BH
    Ground Water; 2012; 50(5):765-74. PubMed ID: 22276594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of a DNAPL source zone in a porous aquifer using the Partitioning Interwell Tracer Test and an inverse modelling approach.
    Dridi L; Pollet I; Razakarisoa O; Schäfer G
    J Contam Hydrol; 2009 Jun; 107(1-2):22-44. PubMed ID: 19395120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An empirical model for the evaluation of the dissolution rate from a DNAPL-contaminated area.
    Luciano A; Mancini G; Torretta V; Viotti P
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33992-34004. PubMed ID: 30280338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wettability-dependent DNAPL migration in a rough-walled fracture.
    Lee HB; Yeo IW; Ji SH; Lee KK
    J Contam Hydrol; 2010 Apr; 113(1-4):44-55. PubMed ID: 20110134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation.
    Power C; Gerhard JI; Karaoulis M; Tsourlos P; Giannopoulos A
    J Contam Hydrol; 2014 Jul; 162-163():27-46. PubMed ID: 24854903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution of entrapped DNAPLs in variable aperture fractures: experimental data and empirical model.
    Dickson SE; Thomson NR
    Environ Sci Technol; 2003 Sep; 37(18):4128-37. PubMed ID: 14524445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.