These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 22481137)
1. Discovery and profiling of novel and conserved microRNAs during flower development in Carya cathayensis via deep sequencing. Wang ZJ; Huang JQ; Huang YJ; Li Z; Zheng BS Planta; 2012 Aug; 236(2):613-21. PubMed ID: 22481137 [TBL] [Abstract][Full Text] [Related]
2. Identification of microRNAs differentially expressed involved in male flower development. Wang Z; Huang J; Sun Z; Zheng B Funct Integr Genomics; 2015 Mar; 15(2):225-32. PubMed ID: 25576251 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide analysis of miRNAs in Carya cathayensis. Sun ZC; Zhang LS; Wang ZJ BMC Plant Biol; 2017 Nov; 17(1):228. PubMed ID: 29187147 [TBL] [Abstract][Full Text] [Related]
4. Identification and profiling of conserved and novel microRNAs involved in oil and oleic acid production during embryogenesis in Carya cathayensis Sarg. Wang Z; Huang R; Sun Z; Zhang T; Huang J Funct Integr Genomics; 2017 May; 17(2-3):365-373. PubMed ID: 28078489 [TBL] [Abstract][Full Text] [Related]
5. Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.). Huang YJ; Liu LL; Huang JQ; Wang ZJ; Chen FF; Zhang QX; Zheng BS; Chen M BMC Genomics; 2013 Oct; 14():691. PubMed ID: 24106755 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide identification of lncRNAs during hickory (Carya cathayensis) flowering. Fan T; Zhang Q; Hu Y; Wang Z; Huang Y Funct Integr Genomics; 2020 Jul; 20(4):591-607. PubMed ID: 32215772 [TBL] [Abstract][Full Text] [Related]
7. Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Wang T; Pan H; Wang J; Yang W; Cheng T; Zhang Q Mol Genet Genomics; 2014 Apr; 289(2):169-83. PubMed ID: 24343764 [TBL] [Abstract][Full Text] [Related]
8. Characterization and comparison of flower bud microRNAs from yellow-horn species. Ao Y Genet Mol Res; 2016 Oct; 15(4):. PubMed ID: 27808390 [TBL] [Abstract][Full Text] [Related]
9. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase. Wang C; Wang X; Kibet NK; Song C; Zhang C; Li X; Han J; Fang J Physiol Plant; 2011 Sep; 143(1):64-81. PubMed ID: 21496033 [TBL] [Abstract][Full Text] [Related]
10. Characterization and comparative profiling of the small RNA transcriptomes in two phases of flowering in Cymbidium ensifolium. Li X; Jin F; Jin L; Jackson A; Ma X; Shu X; Wu D; Jin G BMC Genomics; 2015 Aug; 16(1):622. PubMed ID: 26289943 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization and expression analysis of the critical floral genes in hickory (Carya cathayensis Sarg.). Shen C; Xu Y; Huang J; Wang Z; Qiu J; Huang Y Plant Physiol Biochem; 2014 Oct; 83():142-50. PubMed ID: 25137292 [TBL] [Abstract][Full Text] [Related]
12. Identification of the conserved and novel miRNAs in Mulberry by high-throughput sequencing. Jia L; Zhang D; Qi X; Ma B; Xiang Z; He N PLoS One; 2014; 9(8):e104409. PubMed ID: 25118991 [TBL] [Abstract][Full Text] [Related]
13. High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng. Wu B; Wang M; Ma Y; Yuan L; Lu S PLoS One; 2012; 7(9):e44385. PubMed ID: 22962612 [TBL] [Abstract][Full Text] [Related]
14. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. Feng J; Wang J; Fan P; Jia W; Nie L; Jiang P; Chen X; Lv S; Wan L; Chang S; Li S; Li Y BMC Plant Biol; 2015 Feb; 15():63. PubMed ID: 25848810 [TBL] [Abstract][Full Text] [Related]
15. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. Wang C; Han J; Liu C; Kibet KN; Kayesh E; Shangguan L; Li X; Fang J BMC Genomics; 2012 Mar; 13():122. PubMed ID: 22455456 [TBL] [Abstract][Full Text] [Related]
16. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets. Guo W; Zhang Y; Wang Q; Zhan Y; Zhu G; Yu Q; Zhu L Planta; 2016 Jan; 243(1):83-95. PubMed ID: 26342708 [TBL] [Abstract][Full Text] [Related]
17. High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Wang F; Li L; Liu L; Li H; Zhang Y; Yao Y; Ni Z; Gao J Mol Genet Genomics; 2012 Jul; 287(7):555-63. PubMed ID: 22643909 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing. Peláez P; Trejo MS; Iñiguez LP; Estrada-Navarrete G; Covarrubias AA; Reyes JL; Sanchez F BMC Genomics; 2012 Mar; 13():83. PubMed ID: 22394504 [TBL] [Abstract][Full Text] [Related]
19. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). Song C; Wang C; Zhang C; Korir NK; Yu H; Ma Z; Fang J BMC Genomics; 2010 Jul; 11():431. PubMed ID: 20626894 [TBL] [Abstract][Full Text] [Related]
20. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. Luo Y; Zhang X; Luo Z; Zhang Q; Liu J BMC Plant Biol; 2015 Jan; 15():11. PubMed ID: 25604351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]