BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22481180)

  • 1. Arsenic fractionation in mine spoils 10 years after aided phytostabilization.
    Kumpiene J; Fitts JP; Mench M
    Environ Pollut; 2012 Jul; 166():82-8. PubMed ID: 22481180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of aided phytostabilization of copper-contaminated soil by X-ray absorption spectroscopy and chemical extractions.
    Kumpiene J; Mench M; Bes CM; Fitts JP
    Environ Pollut; 2011 Jun; 159(6):1536-42. PubMed ID: 21454002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil.
    Sneath HE; Hutchings TR; de Leij FA
    Environ Pollut; 2013 Jul; 178():361-6. PubMed ID: 23603665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils.
    Renella G; Landi L; Ascher J; Ceccherini MT; Pietramellara G; Mench M; Nannipieri P
    Environ Pollut; 2008 Apr; 152(3):702-12. PubMed ID: 17692442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities.
    Pardo T; Clemente R; Bernal MP
    Chemosphere; 2011 Jul; 84(5):642-50. PubMed ID: 21492902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area.
    Pearce DC; Dowling K; Gerson AR; Sim MR; Sutton SR; Newville M; Russell R; McOrist G
    Sci Total Environ; 2010 May; 408(12):2590-9. PubMed ID: 20067849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation.
    Moreno-Jiménez E; Clemente R; Mestrot A; Meharg AA
    Environ Pollut; 2013 Feb; 173():238-44. PubMed ID: 23202981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of arsenic in the mining sites of Pine Creek Geosyncline, Northern Australia.
    Eapaea MP; Parry D; Noller B
    Sci Total Environ; 2007 Jul; 379(2-3):201-15. PubMed ID: 17499841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk.
    Mensah AK; Marschner B; Shaheen SM; Wang J; Wang SL; Rinklebe J
    Environ Pollut; 2020 Jun; 261():114116. PubMed ID: 32220748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review.
    Komárek M; Vaněk A; Ettler V
    Environ Pollut; 2013 Jan; 172():9-22. PubMed ID: 22982549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings.
    Seyfferth AL; Webb SM; Andrews JC; Fendorf S
    Environ Sci Technol; 2010 Nov; 44(21):8108-13. PubMed ID: 20936818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic pollution and fractionation in sediments and mine waste samples from different mine sites.
    Larios R; Fernández-Martínez R; Álvarez R; Rucandio I
    Sci Total Environ; 2012 Aug; 431():426-35. PubMed ID: 22704004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoavailability and uptake of arsenic in ryegrass affected by various amendments in soil of an abandoned gold mining site.
    Mensah AK; Shaheen SM; Rinklebe J; Heinze S; Marschner B
    Environ Res; 2022 Nov; 214(Pt 1):113729. PubMed ID: 35803343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromigration of arsenic and co-existing metals in mine tailings.
    Isosaari P; Sillanpää M
    Chemosphere; 2010 Nov; 81(9):1155-8. PubMed ID: 20888026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical extraction of arsenic from contaminated soil under subcritical conditions.
    Oh SY; Yoon MK; Kim IH; Kim JY; Bae W
    Sci Total Environ; 2011 Jul; 409(16):3066-72. PubMed ID: 21601910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.
    Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA
    Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea.
    Nam SM; Kim M; Hyun S; Lee SH
    Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng.
    Yan XL; Lin LY; Liao XY; Zhang WB; Wen Y
    Chemosphere; 2013 Oct; 93(4):661-7. PubMed ID: 23871591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.