These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 22481612)
1. The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase. Brissos V; Chen Z; Martins LO Dalton Trans; 2012 May; 41(20):6247-55. PubMed ID: 22481612 [TBL] [Abstract][Full Text] [Related]
2. The role of Asp116 in the reductive cleavage of dioxygen to water in CotA laccase: assistance during the proton-transfer mechanism. Silva CS; Damas JM; Chen Z; Brissos V; Martins LO; Soares CM; Lindley PF; Bento I Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):186-93. PubMed ID: 22281748 [TBL] [Abstract][Full Text] [Related]
3. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Chen Z; Durão P; Silva CS; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Dalton Trans; 2010 Mar; 39(11):2875-82. PubMed ID: 20200715 [TBL] [Abstract][Full Text] [Related]
4. Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. Durão P; Chen Z; Silva CS; Soares CM; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Biochem J; 2008 Jun; 412(2):339-46. PubMed ID: 18307408 [TBL] [Abstract][Full Text] [Related]
5. Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks. Liu H; Zhu Y; Yang X; Lin Y Appl Microbiol Biotechnol; 2018 May; 102(9):4049-4061. PubMed ID: 29516147 [TBL] [Abstract][Full Text] [Related]
6. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Sakurai T; Kataoka K Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447 [TBL] [Abstract][Full Text] [Related]
8. Decay of the peroxide intermediate in laccase: reductive cleavage of the O-O bond. Palmer AE; Lee SK; Solomon EI J Am Chem Soc; 2001 Jul; 123(27):6591-9. PubMed ID: 11439045 [TBL] [Abstract][Full Text] [Related]
9. How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates. Galli C; Gentili P; Jolivalt C; Madzak C; Vadalà R Appl Microbiol Biotechnol; 2011 Jul; 91(1):123-31. PubMed ID: 21468703 [TBL] [Abstract][Full Text] [Related]
10. Role of aspartate 94 in the decay of the peroxide intermediate in the multicopper oxidase Fet3p. Quintanar L; Stoj C; Wang TP; Kosman DJ; Solomon EI Biochemistry; 2005 Apr; 44(16):6081-91. PubMed ID: 15835897 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites. Augustine AJ; Kragh ME; Sarangi R; Fujii S; Liboiron BD; Stoj CS; Kosman DJ; Hodgson KO; Hedman B; Solomon EI Biochemistry; 2008 Feb; 47(7):2036-45. PubMed ID: 18197705 [TBL] [Abstract][Full Text] [Related]
12. Identification of a radical intermediate in the enzymatic reduction of oxygen by a small laccase. Tepper AW; Milikisyants S; Sottini S; Vijgenboom E; Groenen EJ; Canters GW J Am Chem Soc; 2009 Aug; 131(33):11680-2. PubMed ID: 19645472 [TBL] [Abstract][Full Text] [Related]
13. Insight into stability of CotA laccase from the spore coat of Bacillus subtilis. Melo EP; Fernandes AT; Durão P; Martins LO Biochem Soc Trans; 2007 Dec; 35(Pt 6):1579-82. PubMed ID: 18031270 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic characterization and O2 reactivity of the trinuclear Cu cluster of mutants of the multicopper oxidase Fet3p. Palmer AE; Quintanar L; Severance S; Wang TP; Kosman DJ; Solomon EI Biochemistry; 2002 May; 41(20):6438-48. PubMed ID: 12009907 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. Ferraroni M; Myasoedova NM; Schmatchenko V; Leontievsky AA; Golovleva LA; Scozzafava A; Briganti F BMC Struct Biol; 2007 Sep; 7():60. PubMed ID: 17897461 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. Bento I; Silva CS; Chen Z; Martins LO; Lindley PF; Soares CM BMC Struct Biol; 2010 Sep; 10():28. PubMed ID: 20822511 [TBL] [Abstract][Full Text] [Related]
17. Involvement of Tyr108 in the enzyme mechanism of the small laccase from Streptomyces coelicolor. Gupta A; Nederlof I; Sottini S; Tepper AW; Groenen EJ; Thomassen EA; Canters GW J Am Chem Soc; 2012 Nov; 134(44):18213-6. PubMed ID: 23094962 [TBL] [Abstract][Full Text] [Related]
18. The structure of Rigidoporus lignosus Laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. Garavaglia S; Cambria MT; Miglio M; Ragusa S; Iacobazzi V; Palmieri F; D'Ambrosio C; Scaloni A; Rizzi M J Mol Biol; 2004 Oct; 342(5):1519-31. PubMed ID: 15364578 [TBL] [Abstract][Full Text] [Related]
19. Enhancement in catalytic activity of CotA-laccase from Bacillus pumilus W3 via site-directed mutagenesis. Xu KZ; Wang HR; Wang YJ; Xia J; Ma H; Cai YJ; Liao XR; Guan ZB J Biosci Bioeng; 2020 Apr; 129(4):405-411. PubMed ID: 31672431 [TBL] [Abstract][Full Text] [Related]
20. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Durão P; Bento I; Fernandes AT; Melo EP; Lindley PF; Martins LO J Biol Inorg Chem; 2006 Jun; 11(4):514-26. PubMed ID: 16680453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]