These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22481766)

  • 1. Positioning FBAR technology in the frequency and timing domain.
    Ruby R; Small M; Bi F; Lee D; Callaghan L; Parker R; Ortiz S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):334-45. PubMed ID: 22481766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A digitally compensated 1.5 GHz CMOS/FBAR frequency reference.
    Rai S; Su Y; Pang W; Ruby R; Otis B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):552-61. PubMed ID: 20211770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Optimization of SHF Composite FBAR Resonators.
    Pillai G; Zope AA; Tsai JM; Li SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Dec; 64(12):1864-1873. PubMed ID: 28981414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance.
    Wingqvist G; Anderson H; Lennartsson C; Weissbach T; Yantchev V; Spetz AL
    Biosens Bioelectron; 2009 Jul; 24(11):3387-90. PubMed ID: 19447595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Investigation of Phononic Crystal Based Film Bulk Acoustic Wave Resonators.
    Shi L; Xuan W; Zhang B; Dong S; Jin H; Luo J
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Film Bulk Acoustic Wave Filters toward Radiofrequency Wireless Communication.
    Jiang Y; Zhao Y; Zhang L; Liu B; Li Q; Zhang M; Pang W
    Small; 2018 May; 14(20):e1703644. PubMed ID: 29603639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZnO-based FBAR resonators with carbon nanotube electrodes.
    García-Gancedo L; Al-Naimi F; Flewitt AJ; Milne WI; Ashley GM; Luo JK; Zhao X; Lu JR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2438-45. PubMed ID: 22083776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and Discrimination of Volatile Organic Compounds using a Single Film Bulk Acoustic Wave Resonator with Temperature Modulation as a Multiparameter Virtual Sensor Array.
    Zeng G; Wu C; Chang Y; Zhou C; Chen B; Zhang M; Li J; Duan X; Yang Q; Pang W
    ACS Sens; 2019 Jun; 4(6):1524-1533. PubMed ID: 31132253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic wave based MEMS devices for biosensing applications.
    Voiculescu I; Nordin AN
    Biosens Bioelectron; 2012 Mar; 33(1):1-9. PubMed ID: 22310157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatically tunable piezoelectric-on-silicon micromechanical resonator for real-time clock.
    Serrano D; Tabrizian R; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):358-65. PubMed ID: 22481768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of relative humidity and reducing gases on the temperature coefficient of resonant frequency of ZnO-based film bulk acoustic wave resonator.
    Qiu X; Wang Z; Zhu J; Oiler J; Tang R; Yu C; Yu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1902-5. PubMed ID: 20875979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniature high-frequency longitudinal wave mass sensors in liquid.
    Zhang H; Pang W; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):255-8. PubMed ID: 21244995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of pure-shear mode BAW resonators consisting of (1120) textured ZnO films.
    Yanagitani T; Kiuchi M; Matsukawa M; Watanabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Aug; 54(8):1680-6. PubMed ID: 17703672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of a VOC Sensor with a Bilayered Diaphragm Using FBAR as Strain Sensing Elements.
    Guo H; Guo A; Gao Y; Liu T
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28763042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency domain analysis of lamb wave scattering and application to film bulk acoustic wave resonators.
    Thalmayr F; Hashimoto KY; Omori T; Yamaguchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1641-8. PubMed ID: 20639157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Etching Trench on Keff2 of Film Bulk Acoustic Resonator.
    Gao C; Zou Y; Zhou J; Liu Y; Liu W; Cai Y; Sun C
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Intrinsically Switchable Ladder-Type Ferroelectric BST-on-Si Composite FBAR Filter.
    Lee S; Mortazawi A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):456-62. PubMed ID: 26766372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thin-film bulk acoustic resonator and filter with optimal edge shapes for mass production.
    Hara M; Ueda M; Satoh Y
    Ultrasonics; 2013 Jan; 53(1):90-6. PubMed ID: 22609327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer.
    Chen G; Zhao X; Wang X; Jin H; Li S; Dong S; Flewitt AJ; Milne WI; Luo JK
    Sci Rep; 2015 Mar; 5():9510. PubMed ID: 25824706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Investigation of Lateral Modes in FBAR Resonators.
    Jamneala T; Bradley P; Shirakawa A; Thalhammer R; Ruby R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 May; 63(5):778-789. PubMed ID: 26929039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.