These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22481774)

  • 21. Imaging Optical Frequencies with 100  μHz Precision and 1.1  μm Resolution.
    Marti GE; Hutson RB; Goban A; Campbell SL; Poli N; Ye J
    Phys Rev Lett; 2018 Mar; 120(10):103201. PubMed ID: 29570334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Minimizing the Dick effect in an optical lattice clock.
    Westergaard P; Lodewyck J; Lemonde P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):623-8. PubMed ID: 20211780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of Lattice Light Shift at Low 10^{-19} Uncertainty for a Shallow Lattice Sr Optical Clock.
    Kim K; Aeppli A; Bothwell T; Ye J
    Phys Rev Lett; 2023 Mar; 130(11):113203. PubMed ID: 37001111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator.
    Takamizawa A; Yanagimachi S; Tanabe T; Hagimoto K; Hirano I; Watabe K; Ikegami T; Hartnett JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1463-9. PubMed ID: 25167146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion.
    Margolis HS; Barwood GP; Huang G; Klein HA; Lea SN; Szymaniec K; Gill P
    Science; 2004 Nov; 306(5700):1355-8. PubMed ID: 15550666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. When should we change the definition of the second?
    Gill P
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1953):4109-30. PubMed ID: 21930568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock.
    Wall ML; Koller AP; Li S; Zhang X; Cooper NR; Ye J; Rey AM
    Phys Rev Lett; 2016 Jan; 116(3):035301. PubMed ID: 26849600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A quantum scattering interferometer.
    Hart RA; Xu X; Legere R; Gibble K
    Nature; 2007 Apr; 446(7138):892-5. PubMed ID: 17443182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency measurement of a Sr lattice clock using an SI-second-referenced optical frequency comb linked by a global positioning system (GPS).
    Hong FL; Takamoto M; Higashi R; Fukuyama Y; Jiang J; Katori H
    Opt Express; 2005 Jul; 13(14):5253-62. PubMed ID: 19498517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An optical clock based on a single trapped 199Hg+ ion.
    Diddams SA; Udem T; Bergquist JC; Curtis EA; Drullinger RE; Hollberg L; Itano WM; Lee WD; Oates CW; Vogel KR; Wineland DJ
    Science; 2001 Aug; 293(5531):825-8. PubMed ID: 11452082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blackbody radiation shifts in optical atomic clocks.
    Safronova M; Kozlov M; Clark C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):439-47. PubMed ID: 22481777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolved atomic interaction sidebands in an optical clock transition.
    Bishof M; Lin Y; Swallows MD; Gorshkov AV; Ye J; Rey AM
    Phys Rev Lett; 2011 Jun; 106(25):250801. PubMed ID: 21770623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly coherent spectroscopy of ultracold atoms and molecules in optical lattices.
    Zelevinsky T; Blatt S; Boyd MM; Campbell GK; Ludlow AD; Ye J
    Chemphyschem; 2008 Feb; 9(3):375-82. PubMed ID: 18275047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic evaluation of a
    Gao Q; Zhou M; Han C; Li S; Zhang S; Yao Y; Li B; Qiao H; Ai D; Lou G; Zhang M; Jiang Y; Bi Z; Ma L; Xu X
    Sci Rep; 2018 May; 8(1):8022. PubMed ID: 29789631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic study of the 87Srclock transition in an optical lattice.
    Ludlow AD; Boyd MM; Zelevinsky T; Foreman SM; Blatt S; Notcutt M; Ido T; Ye J
    Phys Rev Lett; 2006 Jan; 96(3):033003. PubMed ID: 16486696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. p-Wave cold collisions in an optical lattice clock.
    Lemke ND; von Stecher J; Sherman JA; Rey AM; Oates CW; Ludlow AD
    Phys Rev Lett; 2011 Sep; 107(10):103902. PubMed ID: 21981504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperpolarizability effects in a Sr optical lattice clock.
    Brusch A; Le Targat R; Baillard X; Fouché M; Lemonde P
    Phys Rev Lett; 2006 Mar; 96(10):103003. PubMed ID: 16605730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock.
    Bowden W; Hobson R; Hill IR; Vianello A; Schioppo M; Silva A; Margolis HS; Baird PEG; Gill P
    Sci Rep; 2019 Aug; 9(1):11704. PubMed ID: 31406188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spin-1/2 optical lattice clock.
    Lemke ND; Ludlow AD; Barber ZW; Fortier TM; Diddams SA; Jiang Y; Jefferts SR; Heavner TP; Parker TE; Oates CW
    Phys Rev Lett; 2009 Aug; 103(6):063001. PubMed ID: 19792559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.