These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22481778)

  • 1. Microfabricated chip-scale rubidium plasma light source for miniature atomic clocks.
    Venkatraman V; Pétremand Y; Affolderbach C; Mileti G; de Rooij NF; Shea H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):448-56. PubMed ID: 22481778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry.
    Zhu Z; Chan GC; Ray SJ; Zhang X; Hieftje GM
    Anal Chem; 2008 Nov; 80(22):8622-7. PubMed ID: 18937424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks.
    Gruet F; Al-Samaneh A; Kroemer E; Bimboes L; Miletic D; Affolderbach C; Wahl D; Boudot R; Mileti G; Michalzik R
    Opt Express; 2013 Mar; 21(5):5781-92. PubMed ID: 23482148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfabricated Vapor Cells with Reflective Sidewalls for Chip Scale Atomic Sensors.
    Han R; You Z; Zhang F; Xue H; Ruan Y
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a miniature dielectric barrier discharge-optical emission spectrometric system for bromide and bromate screening in environmental water samples.
    Yu YL; Cai Y; Chen ML; Wang JH
    Anal Chim Acta; 2014 Jan; 809():30-6. PubMed ID: 24418130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chip-scale atomic clock based on 87Rb with improved frequency stability.
    Knappe S; Schwindt P; Shah V; Hollberg L; Kitching J; Liew L; Moreland J
    Opt Express; 2005 Feb; 13(4):1249-53. PubMed ID: 19494996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodine excitation in a dielectric barrier discharge micro-plasma and its determination by optical emission spectrometry.
    Yu YL; Dou S; Chen ML; Wang JH
    Analyst; 2013 Mar; 138(6):1719-25. PubMed ID: 23383405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous excitation of
    Gan Q; Shang J; Ji Y; Wu L
    Rev Sci Instrum; 2017 Nov; 88(11):115009. PubMed ID: 29195395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature atomic scalar magnetometer for space based on the rubidium isotope
    Korth H; Strohbehn K; Tejada F; Andreou AG; Kitching J; Knappe S; Lehtonen SJ; London SM; Kafel M
    J Geophys Res Space Phys; 2016 Aug; 121(8):7870-7880. PubMed ID: 27774373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: Miniature dielectric barrier discharge (DBD) in analytical atomic spectrometry.
    Niu G; Knodel A; Burhenn S; Brandt S; Franzke J
    Anal Chim Acta; 2021 Feb; 1147():211-239. PubMed ID: 33485580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct optical emission spectroscopy of liquid analytes using an electrolyte as a cathode discharge source (ELCAD) integrated on a micro-fluidic chip.
    Jenkins G; Franzke J; Manz A
    Lab Chip; 2005 Jul; 5(7):711-8. PubMed ID: 15970963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating Rubidium Density and Temperature Distributions in a High-Throughput
    Ball JE; Wild JM; Norquay G
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically-Pumped Wavelength-Tunable GaAs Quantum Dots Interfaced with Rubidium Atoms.
    Huang H; Trotta R; Huo Y; Lettner T; Wildmann JS; Martín-Sánchez J; Huber D; Reindl M; Zhang J; Zallo E; Schmidt OG; Rastelli A
    ACS Photonics; 2017 Mar; 4(4):868-872. PubMed ID: 28523285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb.
    Pooser RC; Marino AM; Boyer V; Jones KM; Lett PD
    Opt Express; 2009 Sep; 17(19):16722-30. PubMed ID: 19770887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Handheld Flyback driven coaxial dielectric barrier discharge: Development and characterization.
    Law VJ; Milosavljević V; O'Connor N; Lalor JF; Daniels S
    Rev Sci Instrum; 2008 Sep; 79(9):094707. PubMed ID: 19044446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A polarization converting device for an interfering enhanced CPT atomic clock.
    Wang K; Tian Y; Yin Y; Wang Y; Gu S
    Rev Sci Instrum; 2017 Nov; 88(11):113107. PubMed ID: 29195405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave oscillator using piezoelectric thin-film resonator aiming for ultraminiaturization of atomic clock.
    Hara M; Yano Y; Kajita M; Nishino H; Ibata Y; Toda M; Hara S; Kasamatsu A; Ito H; Ono T; Ido T
    Rev Sci Instrum; 2018 Oct; 89(10):105002. PubMed ID: 30399742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A microfabricated ICP source base on planar spiral-shaped coil].
    Wang YQ; Lou JZ; Sun RX; Ma W; Tang YJ; Pu YN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2708-12. PubMed ID: 19271524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Frequency-Doubled 1.5- m Lasers for High-Performance Rb Clocks.
    Almat N; Moreno W; Pellaton M; Gruet F; Affolderbach C; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):919-926. PubMed ID: 29856708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfabricated incandescent lamps.
    Mastrangelo CH; Muller RS; Kumar S
    Appl Opt; 1991 Mar; 30(7):868-73. PubMed ID: 20582072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.