These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 224818)

  • 1. Breakdown of corticotropin-(1-24) by mouse brain extracts.
    Reith ME; Neidle A; Lajtha A
    Arch Biochem Biophys; 1979 Jul; 195(2):478-84. PubMed ID: 224818
    [No Abstract]   [Full Text] [Related]  

  • 2. Removal of Arg1 and Phe22 from CLIP (ACTH18-39) by rodent pituitary and blood peptidases.
    McDermott JR; Biggins JA; Smith AI; Gibson AM; Keith AB; Edwardson JA
    Peptides; 1988; 9(4):757-61. PubMed ID: 2852359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Nalpha-acetylation of corticotropin and fragments of corticotropin by a rat pituitary Nalpha-acetyltransferase.
    Woodford TA; Dixon JE
    J Biol Chem; 1979 Jun; 254(12):4993-9. PubMed ID: 221456
    [No Abstract]   [Full Text] [Related]  

  • 4. The degradation of adrenocorticotrophic hormone-(1-4) by mouse brain cytosol.
    Neidle A; Reith ME
    Arch Biochem Biophys; 1980 Aug; 203(1):288-95. PubMed ID: 6250487
    [No Abstract]   [Full Text] [Related]  

  • 5. Action of peptidases in brain synaptic membranes on the NH2-terminus of adrenocorticotropin using ACTH-(1-16)-NH2 as a model substrate.
    Wang XC; Burbach JP; Verhoef JC
    Biochem Biophys Res Commun; 1983 Feb; 111(1):259-65. PubMed ID: 6299290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-brain barrier transport of ebiratide and its uptake by cerebral neuronal cells.
    Shimura T; Tabata S; Matsumoto T; Kondo S; Tsuda S; Deguchi Y; Terasaki T; Tsuji A
    Ann N Y Acad Sci; 1993 May; 680():609-11. PubMed ID: 8390202
    [No Abstract]   [Full Text] [Related]  

  • 7. Transport mechanism of a new behaviorally highly potent adrenocorticotropic hormone (ACTH) analog, ebiratide, through the blood-brain barrier.
    Shimura T; Tabata S; Ohnishi T; Terasaki T; Tsuji A
    J Pharmacol Exp Ther; 1991 Aug; 258(2):459-65. PubMed ID: 1650827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of phosphorylated forms of corticotropin-related peptides.
    Bennett HP; Browne CA; Solomon S
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4713-7. PubMed ID: 6272271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential proopiomelanocortin processing in the rhesus monkey intermediate pituitary.
    Morton JL; Davenport M; Bodkin NL; Hansen BC
    Ann N Y Acad Sci; 1993 May; 680():585-7. PubMed ID: 8390197
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of dopamine on the secretion and processing of beta-cell tropin from isolated pituitary neurointermediate lobes of mice.
    Eagle L; Morton J; Dunmore S
    Ann N Y Acad Sci; 1993 May; 680():499-501. PubMed ID: 8390177
    [No Abstract]   [Full Text] [Related]  

  • 11. On the presence of receptors for ACTH neuropeptides in the brain.
    Witter A
    Adv Biochem Psychopharmacol; 1980; 21():407-14. PubMed ID: 6246752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, characterization, and synthesis of a corticotropin-inhibiting peptide from human pituitary glands.
    Li CH; Chung D; Yamashiro D; Lee CY
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4306-9. PubMed ID: 212744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous ligands for CNS drug receptors?
    Leysen JE; Gommeren W; Laduron PM
    Arch Int Pharmacodyn Ther; 1978 Dec; 236(2):310-4. PubMed ID: 218510
    [No Abstract]   [Full Text] [Related]  

  • 14. Skin POMC peptides. Their binding affinities and activation of the human MC1 receptor.
    Tsatmalia M; Wakamatsu K; Graham AJ; Thody AJ
    Ann N Y Acad Sci; 1999 Oct; 885():466-9. PubMed ID: 10816690
    [No Abstract]   [Full Text] [Related]  

  • 15. A molecular basis for the interactions of corticotropin with opiate receptors.
    Snell CR; Snell PH
    FEBS Lett; 1982 Jan; 137(2):209-12. PubMed ID: 6277691
    [No Abstract]   [Full Text] [Related]  

  • 16. Adrenocorticotropin, vasoactive intestinal polypeptide, growth hormone-releasing factor, and dynorphin compete for common receptors in brain and adrenal.
    Li ZG; Queen G; LaBella FS
    Endocrinology; 1990 Mar; 126(3):1327-33. PubMed ID: 1968378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of ACTH1-39,ACTH1-38 and CLIP from the calf anterior pituitary.
    Brubaker PL; Bennett HP; Baird AC; Solomon S
    Biochem Biophys Res Commun; 1980 Oct; 96(3):1441-8. PubMed ID: 6254534
    [No Abstract]   [Full Text] [Related]  

  • 18. An analysis of binding specificity of the alpha-MSH derivative Org2766 in cultured rat Schwann cells.
    Dyer JK; Philipsen HL; Tonnaer JA; Haynes LW
    Ann N Y Acad Sci; 1993 May; 680():496-8. PubMed ID: 8390176
    [No Abstract]   [Full Text] [Related]  

  • 19. Signal transduction in the ACTH receptor: activation by microaggregation.
    Mihal KA; Krueger RJ
    Prog Clin Biol Res; 1989; 292():477-86. PubMed ID: 2542986
    [No Abstract]   [Full Text] [Related]  

  • 20. Action of three ectopeptidases on corticotropin-releasing factor: metabolism and functional aspects.
    Ritchie JC; Davis TP; Nemeroff CB
    Neuropsychopharmacology; 2003 Jan; 28(1):22-33. PubMed ID: 12496937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.