These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22481802)

  • 1. Real-time automatic tuning of noise suppression algorithms for cochlear implant applications.
    Gopalakrishna V; Kehtarnavaz N; Mirzahasanloo TS; Loizou PC
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1691-700. PubMed ID: 22481802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adding real-time noise suppression capability to the cochlear implant PDA research platform.
    Mirzahasanloo T; Gopalakrishna V; Kehtarnavaz N; Loizou P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2271-4. PubMed ID: 23366376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time automatic switching between noise suppression algorithms for deployment in cochlear implants.
    Gopalakrishna V; Kehtarnavaz N; Loizou PC; Panahi I
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():863-6. PubMed ID: 21097196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Noise signal reduction in cochlear implant speech processors].
    Müller-Deile J
    HNO; 1995 Sep; 43(9):545-51. PubMed ID: 7591867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encoding frequency modulation to improve cochlear implant performance in noise.
    Nie K; Stickney G; Zeng FG
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):64-73. PubMed ID: 15651565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [CILAB--a PC-based laboratory speech processor for implementation and evaluation of new stimulation strategies for cochlear implants].
    Mitterbacher A; Lampacher P; Zierhofer C; Hochmair E
    Biomed Tech (Berl); 2004 Jun; 49(6):146-52. PubMed ID: 15279463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-power asynchronous interleaved sampling algorithm for cochlear implants that encodes envelope and phase information.
    Sit JJ; Simonson AM; Oxenham AJ; Faltys MA; Sarpeshkar R
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):138-49. PubMed ID: 17260865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefit of a commercially available cochlear implant processor with dual-microphone beamforming: a multi-center study.
    Wolfe J; Parkinson A; Schafer EC; Gilden J; Rehwinkel K; Mansanares J; Coughlan E; Wright J; Torres J; Gannaway S
    Otol Neurotol; 2012 Jun; 33(4):553-60. PubMed ID: 22588233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System.
    Spriet A; Van Deun L; Eftaxiadis K; Laneau J; Moonen M; van Dijk B; van Wieringen A; Wouters J
    Ear Hear; 2007 Feb; 28(1):62-72. PubMed ID: 17204899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a real time sparse non-negative matrix factorization module for cochlear implants by using xPC target.
    Hu H; Krasoulis A; Lutman M; Bleeck S
    Sensors (Basel); 2013 Oct; 13(10):13861-78. PubMed ID: 24129021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [An improved spectral subtraction algorithm applied to speech enhancement in the cochlear implant].
    Sun J; Tian L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Feb; 27(1):188-92. PubMed ID: 20337051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of front-end processing on cochlear implant performance of children.
    Wolfe J; Schafer EC; John A; Hudson M
    Otol Neurotol; 2011 Jun; 32(4):533-8. PubMed ID: 21436756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-band environment-adaptive approach to noise suppression for cochlear implants.
    Saki F; Mirzahasanloo T; Kehtarnavaz N
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1699-702. PubMed ID: 25570302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital signal processing (DSP) applications for multiband loudness correction digital hearing aids and cochlear implants.
    Dillier N; Frölich T; Kompis M; Bögli H; Lai WK
    J Rehabil Res Dev; 1993; 30(1):95-109. PubMed ID: 8263833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time implementation of cochlear implant speech processing pipeline on smartphones.
    Parris S; Torlak M; Kehtarnavaz N
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():886-9. PubMed ID: 25570101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a sigmoidal-shaped function for noise attenuation in cochlear implants.
    Hu Y; Loizou PC; Li N; Kasturi K
    J Acoust Soc Am; 2007 Oct; 122(4):EL128-34. PubMed ID: 17902741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of subjects fit with the Advanced Bionics CII and Nucleus 3G cochlear implant devices.
    Spahr AJ; Dorman MF
    Arch Otolaryngol Head Neck Surg; 2004 May; 130(5):624-8. PubMed ID: 15148187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SVD-based optimal filtering for noise reduction in dual microphone hearing aids: a real time implementation and perceptual evaluation.
    Maj JB; Royackers L; Moonen M; Wouters J
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1563-73. PubMed ID: 16189969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of real-time loudness models can improve speech recognition for cochlear implant users.
    Varsavsky A; McDermott HJ
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):81-7. PubMed ID: 22961312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.