BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22481982)

  • 1. Gossypol Inhibits Electron Transport and Stimulates ROS Generation in Yarrowia lipolytica Mitochondria.
    Arinbasarova AY; Medentsev AG; Krupyanko VI
    Open Biochem J; 2012; 6():11-5. PubMed ID: 22481982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway.
    Guerrero-Castillo S; Vázquez-Acevedo M; González-Halphen D; Uribe-Carvajal S
    Biochim Biophys Acta; 2009 Feb; 1787(2):75-85. PubMed ID: 19038229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of gossypol and Lonidamine on electron transport in Ehrlich ascites tumor mitochondria.
    Floridi A; D'Atri S; Bellocci M; Marcante ML; Paggi MG; Silvestrini B; Caputo A; De Martino C
    Exp Mol Pathol; 1984 Apr; 40(2):246-61. PubMed ID: 6705894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.
    Vrbacký M; Drahota Z; Mrácek T; Vojtísková A; Jesina P; Stopka P; Houstek J
    Biochim Biophys Acta; 2007 Jul; 1767(7):989-97. PubMed ID: 17560536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway.
    Guerrero-Castillo S; Cabrera-Orefice A; Vázquez-Acevedo M; González-Halphen D; Uribe-Carvajal S
    Biochim Biophys Acta; 2012 Feb; 1817(2):353-62. PubMed ID: 22138628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of the alternative oxidase in respiration of Yarrowia lipolytica mitochondria is controlled by the activity of the cytochrome pathway.
    Medentsev AG; Arinbasarova AY; Golovchenko NP; Akimenko VK
    FEMS Yeast Res; 2002 Dec; 2(4):519-24. PubMed ID: 12702267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport.
    Schönfeld P; Wojtczak L
    Biochim Biophys Acta; 2007 Aug; 1767(8):1032-40. PubMed ID: 17588527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 26 Measurement of superoxide formation by mitochondrial complex I of Yarrowia lipolytica.
    Dröse S; Galkin A; Brandt U
    Methods Enzymol; 2009; 456():475-90. PubMed ID: 19348905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADH oxidation drives respiratory Na+ transport in mitochondria from Yarrowia lipolytica.
    Lin PC; Puhar A; Steuber J
    Arch Microbiol; 2008 Oct; 190(4):471-80. PubMed ID: 18551278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress.
    Gyulkhandanyan AV; Pennefather PS
    J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neuromediator glutamate, through specific substrate interactions, enhances mitochondrial ATP production and reactive oxygen species generation in nonsynaptic brain mitochondria.
    Panov A; Schonfeld P; Dikalov S; Hemendinger R; Bonkovsky HL; Brooks BR
    J Biol Chem; 2009 May; 284(21):14448-56. PubMed ID: 19304986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The alternative oxidase of Yarrowia lipolytica mitochondria is unable to compete with the cytochrome pathway for electrons].
    Akimenko VK; Arinbasarova AIu; Smirnova NM; Medentsev AG
    Mikrobiologiia; 2003; 72(4):453-8. PubMed ID: 14526532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of reactive oxygen species by mitochondria: central role of complex III.
    Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ
    J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Control of the alternative pathway of electron transfer in mitochondria of the yeast Candida lipolytica].
    Medentsev AG; Akimenko VK
    Biokhimiia; 1980 Jun; 45(6):1068-74. PubMed ID: 7213846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae.
    Beattie DS; Clejan L
    Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates.
    Quinlan CL; Perevoshchikova IV; Hey-Mogensen M; Orr AL; Brand MD
    Redox Biol; 2013; 1(1):304-12. PubMed ID: 24024165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sites of inhibition of mitochondrial electron transport by rhein.
    Floridi A; Castiglione S; Bianchi C
    Biochem Pharmacol; 1989 Mar; 38(5):743-51. PubMed ID: 2522779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.