These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22482073)

  • 1. Stimulation-dependent intraspinal microtubules and synaptic failure in Alzheimer's disease: a review.
    Mitsuyama F; Futatsugi Y; Okuya M; Kawase T; Karagiozov K; Kato Y; Kanno T; Sano H; Nagao S; Koide T
    Int J Alzheimers Dis; 2012; 2012():519682. PubMed ID: 22482073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloid beta: a putative intra-spinal microtubule-depolymerizer to induce synapse-loss or dentritic spine shortening in Alzheimer's disease.
    Mitsuyama F; Futatsugi Y; Okuya M; Karagiozov K; Peev N; Kato Y; Kanno T; Sano H; Koide T
    Ital J Anat Embryol; 2009; 114(2-3):109-20. PubMed ID: 20198823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic Spine and Synaptic Plasticity in Alzheimer's Disease: A Focus on MicroRNA.
    Reza-Zaldivar EE; Hernández-Sápiens MA; Minjarez B; Gómez-Pinedo U; Sánchez-González VJ; Márquez-Aguirre AL; Canales-Aguirre AA
    Front Cell Dev Biol; 2020; 8():255. PubMed ID: 32432108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the drebrin/EB3/Cdk5 pathway in dendritic spine plasticity, implications for Alzheimer's disease.
    Gordon-Weeks PR
    Brain Res Bull; 2016 Sep; 126(Pt 3):293-299. PubMed ID: 27365229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redistribution of microtubules in dendrites of hippocampal CA1 neurons after tetanic stimulation during long-term potentiation.
    Mitsuyama F; Niimi G; Kato K; Hirosawa K; Mikoshiba K; Okuya M; Karagiozov K; Kato Y; Kanno T; Sanoe H; Koide T
    Ital J Anat Embryol; 2008; 113(1):17-27. PubMed ID: 18491451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-Dependent Actin Remodeling at the Base of Dendritic Spines Promotes Microtubule Entry.
    Schätzle P; Esteves da Silva M; Tas RP; Katrukha EA; Hu HY; Wierenga CJ; Kapitein LC; Hoogenraad CC
    Curr Biol; 2018 Jul; 28(13):2081-2093.e6. PubMed ID: 29910073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Of microtubules and memory: implications for microtubule dynamics in dendrites and spines.
    Dent EW
    Mol Biol Cell; 2017 Jan; 28(1):1-8. PubMed ID: 28035040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making of a Synapse: Recurrent Roles of Drebrin A at Excitatory Synapses Throughout Life.
    Aoki C; Sherpa AD
    Adv Exp Med Biol; 2017; 1006():119-139. PubMed ID: 28865018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Microtubules in Alzheimer's Disease: Association with Dendritic Spine Pathology.
    Pchitskaya EI; Zhemkov VA; Bezprozvanny IB
    Biochemistry (Mosc); 2018 Sep; 83(9):1068-1074. PubMed ID: 30472945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-dependent dynamic microtubule invasion of dendritic spines.
    Hu X; Viesselmann C; Nam S; Merriam E; Dent EW
    J Neurosci; 2008 Dec; 28(49):13094-105. PubMed ID: 19052200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin filaments and microtubules in dendritic spines.
    Shirao T; González-Billault C
    J Neurochem; 2013 Jul; 126(2):155-64. PubMed ID: 23692384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing dendritic spine pathology in Alzheimer's disease: problems and opportunities.
    Dorostkar MM; Zou C; Blazquez-Llorca L; Herms J
    Acta Neuropathol; 2015 Jul; 130(1):1-19. PubMed ID: 26063233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. APLP1 Is a Synaptic Cell Adhesion Molecule, Supporting Maintenance of Dendritic Spines and Basal Synaptic Transmission.
    Schilling S; Mehr A; Ludewig S; Stephan J; Zimmermann M; August A; Strecker P; Korte M; Koo EH; Müller UC; Kins S; Eggert S
    J Neurosci; 2017 May; 37(21):5345-5365. PubMed ID: 28450540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity.
    Wheal HV; Chen Y; Mitchell J; Schachner M; Maerz W; Wieland H; Van Rossum D; Kirsch J
    Prog Neurobiol; 1998 Aug; 55(6):611-40. PubMed ID: 9670221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic Plasticity, Dementia and Alzheimer Disease.
    Skaper SD; Facci L; Zusso M; Giusti P
    CNS Neurol Disord Drug Targets; 2017; 16(3):220-233. PubMed ID: 28088900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A compartmental model for activity-dependent dendritic spine branching.
    Verzi DW; Noris OY
    Bull Math Biol; 2009 Jul; 71(5):1048-72. PubMed ID: 19172359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic microtubules promote synaptic NMDA receptor-dependent spine enlargement.
    Merriam EB; Lumbard DC; Viesselmann C; Ballweg J; Stevenson M; Pietila L; Hu X; Dent EW
    PLoS One; 2011; 6(11):e27688. PubMed ID: 22096612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-3-n-Butylphthalide improves synaptic and dendritic spine plasticity and ameliorates neurite pathology in Alzheimer's disease mouse model and cultured hippocampal neurons.
    Huang L; Lan J; Tang J; Kang Y; Feng X; Wu L; Peng Y
    Mol Neurobiol; 2021 Mar; 58(3):1260-1274. PubMed ID: 33146400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for altered dendritic spine compartmentalization in Alzheimer's disease and functional effects in a mouse model.
    Androuin A; Potier B; Nägerl UV; Cattaert D; Danglot L; Thierry M; Youssef I; Triller A; Duyckaerts C; El Hachimi KH; Dutar P; Delatour B; Marty S
    Acta Neuropathol; 2018 Jun; 135(6):839-854. PubMed ID: 29696365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of drebrin in neurons.
    Shirao T; Hanamura K; Koganezawa N; Ishizuka Y; Yamazaki H; Sekino Y
    J Neurochem; 2017 Jun; 141(6):819-834. PubMed ID: 28199019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.