BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22482460)

  • 1. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos.
    George S; Lin S; Ji Z; Thomas CR; Li L; Mecklenburg M; Meng H; Wang X; Zhang H; Xia T; Hohman JN; Lin S; Zink JI; Weiss PS; Nel AE
    ACS Nano; 2012 May; 6(5):3745-59. PubMed ID: 22482460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos.
    Groh KJ; Dalkvist T; Piccapietra F; Behra R; Suter MJ; Schirmer K
    Nanotoxicology; 2015 Feb; 9(1):81-91. PubMed ID: 24625062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicity of different-shaped silver nanoparticles: Case of zebrafish embryos.
    Abramenko NB; Demidova TB; Abkhalimov ЕV; Ershov BG; Krysanov EY; Kustov LM
    J Hazard Mater; 2018 Apr; 347():89-94. PubMed ID: 29291521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish.
    Orbea A; González-Soto N; Lacave JM; Barrio I; Cajaraville MP
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Sep; 199():59-68. PubMed ID: 28274763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.
    Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S
    Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy.
    Lee KJ; Browning LM; Nallathamby PD; Xu XH
    Chem Res Toxicol; 2013 Jun; 26(6):904-17. PubMed ID: 23621491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition.
    Yue Y; Behra R; Sigg L; Fernández Freire P; Pillai S; Schirmer K
    Nanotoxicology; 2015 Feb; 9(1):54-63. PubMed ID: 24621324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafish embryos.
    George S; Gardner H; Seng EK; Chang H; Wang C; Yu Fang CH; Richards M; Valiyaveettil S; Chan WK
    Environ Sci Technol; 2014 Jun; 48(11):6374-82. PubMed ID: 24811346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium.
    Yue Y; Behra R; Sigg L; Schirmer K
    Nanotoxicology; 2016 Oct; 10(8):1075-83. PubMed ID: 27030289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos.
    Lee KJ; Nallathamby PD; Browning LM; Osgood CJ; Xu XH
    ACS Nano; 2007 Sep; 1(2):133-43. PubMed ID: 19122772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of particle size and coating on nanoscale Ag and TiO₂ exposure in zebrafish (Danio rerio) embryos.
    Osborne OJ; Johnston BD; Moger J; Balousha M; Lead JR; Kudoh T; Tyler CR
    Nanotoxicology; 2013 Dec; 7(8):1315-24. PubMed ID: 23035978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita.
    Taju G; Abdul Majeed S; Nambi KS; Sahul Hameed AS
    Comp Biochem Physiol C Toxicol Pharmacol; 2014 Apr; 161():41-52. PubMed ID: 24524868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of silver nanoparticles with algae and fish cells: a side by side comparison.
    Yue Y; Li X; Sigg L; Suter MJ; Pillai S; Behra R; Schirmer K
    J Nanobiotechnology; 2017 Feb; 15(1):16. PubMed ID: 28245850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential lethal and sublethal effects in embryonic zebrafish exposed to different sizes of silver nanoparticles.
    Liu X; Dumitrescu E; Kumar A; Austin D; Goia D; Wallace KN; Andreescu S
    Environ Pollut; 2019 May; 248():627-634. PubMed ID: 30844699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential.
    Wang X; Ji Z; Chang CH; Zhang H; Wang M; Liao YP; Lin S; Meng H; Li R; Sun B; Winkle LV; Pinkerton KE; Zink JI; Xia T; Nel AE
    Small; 2014 Jan; 10(2):385-98. PubMed ID: 24039004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of toxicity of silver nanomaterials and silver nitrate on developing zebrafish embryos: Bioavailability, osmoregulatory and oxidative stress.
    Pereira SPP; Boyle D; Nogueira AJA; Handy RD
    Chemosphere; 2023 Sep; 336():139236. PubMed ID: 37330064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos.
    Lee KJ; Browning LM; Nallathamby PD; Desai T; Cherukuri PK; Xu XH
    Chem Res Toxicol; 2012 May; 25(5):1029-46. PubMed ID: 22486336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferric ion-assisted in situ synthesis of silver nanoplates on polydopamine-coated silk.
    Xiao J; Zhang H; Mao C; Wang Y; Wang L; Lu Z
    J Colloid Interface Sci; 2016 Oct; 479():244-250. PubMed ID: 27390855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humic acid attenuation of silver nanoparticle toxicity by ion complexation and the formation of a Ag
    Cáceres-Vélez PR; Fascineli ML; Sousa MH; Grisolia CK; Yate L; de Souza PEN; Estrela-Lopis I; Moya S; Azevedo RB
    J Hazard Mater; 2018 Jul; 353():173-181. PubMed ID: 29674092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waterborne exposure of adult zebrafish to silver nanoparticles and to ionic silver results in differential silver accumulation and effects at cellular and molecular levels.
    Lacave JM; Vicario-Parés U; Bilbao E; Gilliland D; Mura F; Dini L; Cajaraville MP; Orbea A
    Sci Total Environ; 2018 Nov; 642():1209-1220. PubMed ID: 30045502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.