These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 22482535)
1. Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation. Bleiziffer P; Hesselmann A; Görling A J Chem Phys; 2012 Apr; 136(13):134102. PubMed ID: 22482535 [TBL] [Abstract][Full Text] [Related]
2. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel. Bleiziffer P; Krug M; Görling A J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411 [TBL] [Abstract][Full Text] [Related]
3. Efficient self-consistent treatment of electron correlation within the random phase approximation. Bleiziffer P; Heßelmann A; Görling A J Chem Phys; 2013 Aug; 139(8):084113. PubMed ID: 24006980 [TBL] [Abstract][Full Text] [Related]
4. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation. Burow AM; Bates JE; Furche F; Eshuis H J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901 [TBL] [Abstract][Full Text] [Related]
5. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. Eshuis H; Yarkony J; Furche F J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696 [TBL] [Abstract][Full Text] [Related]
6. General orbital invariant MP2-F12 theory. Werner HJ; Adler TB; Manby FR J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584 [TBL] [Abstract][Full Text] [Related]
7. A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r(12) perturbation theory. Klopper W J Chem Phys; 2004 Jun; 120(23):10890-5. PubMed ID: 15268119 [TBL] [Abstract][Full Text] [Related]
8. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond. Verma P; Bartlett RJ J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859 [TBL] [Abstract][Full Text] [Related]
9. Improved supermolecular second order Møller-Plesset intermolecular interaction energies using time-dependent density functional response theory. Hesselmann A J Chem Phys; 2008 Apr; 128(14):144112. PubMed ID: 18412428 [TBL] [Abstract][Full Text] [Related]
10. Accurate calculation and modeling of the adiabatic connection in density functional theory. Teale AM; Coriani S; Helgaker T J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266 [TBL] [Abstract][Full Text] [Related]
12. Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme. Del Ben M; Hutter J; VandeVondele J J Chem Theory Comput; 2013 Jun; 9(6):2654-71. PubMed ID: 26583860 [TBL] [Abstract][Full Text] [Related]
13. Dual-basis second-order Moller-Plesset perturbation theory: A reduced-cost reference for correlation calculations. Steele RP; DiStasio RA; Shao Y; Kong J; Head-Gordon M J Chem Phys; 2006 Aug; 125(7):074108. PubMed ID: 16942323 [TBL] [Abstract][Full Text] [Related]
14. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity. Jiang H; Engel E J Chem Phys; 2005 Dec; 123(22):224102. PubMed ID: 16375465 [TBL] [Abstract][Full Text] [Related]
15. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules. Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488 [TBL] [Abstract][Full Text] [Related]
16. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory. Zope RR; Dunlap BI J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149 [TBL] [Abstract][Full Text] [Related]
17. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem. Bleiziffer P; Schmidtel D; Görling A J Chem Phys; 2014 Nov; 141(20):204107. PubMed ID: 25429933 [TBL] [Abstract][Full Text] [Related]
18. Relation between exchange-only optimized potential and Kohn-Sham methods with finite basis sets, and effect of linearly dependent products of orbital basis functions. Görling A; Hesselmann A; Jones M; Levy M J Chem Phys; 2008 Mar; 128(10):104104. PubMed ID: 18345874 [TBL] [Abstract][Full Text] [Related]
19. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems. Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724 [TBL] [Abstract][Full Text] [Related]
20. Role of Hartree-Fock and Kohn-Sham orbitals in the basis set superposition error for systems linked by hydrogen bonds. Garza J; Ramírez JZ; Vargas R J Phys Chem A; 2005 Feb; 109(4):643-51. PubMed ID: 16833391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]