These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
686 related articles for article (PubMed ID: 22482620)
1. Quantitative cone-beam CT imaging in radiation therapy using planning CT as a prior: first patient studies. Niu T; Al-Basheer A; Zhu L Med Phys; 2012 Apr; 39(4):1991-2000. PubMed ID: 22482620 [TBL] [Abstract][Full Text] [Related]
2. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images. Niu T; Sun M; Star-Lack J; Gao H; Fan Q; Zhu L Med Phys; 2010 Oct; 37(10):5395-406. PubMed ID: 21089775 [TBL] [Abstract][Full Text] [Related]
3. Planning CT-guided robust and fast cone-beam CT scatter correction using a local filtration technique. Cui H; Jiang X; Fang C; Zhu L; Yang Y Med Phys; 2021 Nov; 48(11):6832-6843. PubMed ID: 34662433 [TBL] [Abstract][Full Text] [Related]
4. Assessing the impact of choosing different deformable registration algorithms on cone-beam CT enhancement by histogram matching. Kidar HS; Azizi H Radiat Oncol; 2018 Nov; 13(1):217. PubMed ID: 30404657 [TBL] [Abstract][Full Text] [Related]
5. Quantitative evaluation of a cone-beam computed tomography-planning computed tomography deformable image registration method for adaptive radiation therapy. Lawson JD; Schreibmann E; Jani AB; Fox T J Appl Clin Med Phys; 2007 Nov; 8(4):96-113. PubMed ID: 18449149 [TBL] [Abstract][Full Text] [Related]
6. Image-domain shading correction for cone-beam CT without prior patient information. Fan Q; Lu B; Park JC; Niu T; Li JG; Liu C; Zhu L J Appl Clin Med Phys; 2015 Nov; 16(6):65-75. PubMed ID: 26699555 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of Hounsfield unit distribution in cone-beam CT images for adaptive radiation therapy: Evaluation of a hybrid correction approach. Kidar HS; Azizi H Phys Med; 2020 Jan; 69():269-274. PubMed ID: 31927264 [TBL] [Abstract][Full Text] [Related]
8. Scatter correction for cone-beam CT in radiation therapy. Zhu L; Xie Y; Wang J; Xing L Med Phys; 2009 Jun; 36(6):2258-68. PubMed ID: 19610315 [TBL] [Abstract][Full Text] [Related]
9. Investigating deformable image registration and scatter correction for CBCT-based dose calculation in adaptive IMPT. Kurz C; Kamp F; Park YK; Zöllner C; Rit S; Hansen D; Podesta M; Sharp GC; Li M; Reiner M; Hofmaier J; Neppl S; Thieke C; Nijhuis R; Ganswindt U; Belka C; Winey BA; Parodi K; Landry G Med Phys; 2016 Oct; 43(10):5635. PubMed ID: 27782706 [TBL] [Abstract][Full Text] [Related]
10. Fast shading correction for cone beam CT in radiation therapy via sparse sampling on planning CT. Shi L; Tsui T; Wei J; Zhu L Med Phys; 2017 May; 44(5):1796-1808. PubMed ID: 28261827 [TBL] [Abstract][Full Text] [Related]
11. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT. Chen T; Kim S; Goyal S; Jabbour S; Zhou J; Rajagopal G; Haffty B; Yue N Med Phys; 2010 Jan; 37(1):197-210. PubMed ID: 20175482 [TBL] [Abstract][Full Text] [Related]
12. Validation of a deformable image registration technique for cone beam CT-based dose verification. Moteabbed M; Sharp GC; Wang Y; Trofimov A; Efstathiou JA; Lu HM Med Phys; 2015 Jan; 42(1):196-205. PubMed ID: 25563260 [TBL] [Abstract][Full Text] [Related]
13. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy. Zhou J; Kim S; Jabbour S; Goyal S; Haffty B; Chen T; Levinson L; Metaxas D; Yue NJ Med Phys; 2010 Mar; 37(3):1298-308. PubMed ID: 20384267 [TBL] [Abstract][Full Text] [Related]
14. A feature alignment score for online cone-beam CT-based image-guided radiotherapy for prostate cancer. Hargrave C; Deegan T; Poulsen M; Bednarz T; Harden F; Mengersen K Med Phys; 2018 Jul; 45(7):2898-2911. PubMed ID: 29772077 [TBL] [Abstract][Full Text] [Related]
15. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study. Meng B; Xing L; Han B; Koong A; Chang D; Cheng J; Li R Phys Med Biol; 2013 Nov; 58(21):7777-89. PubMed ID: 24140954 [TBL] [Abstract][Full Text] [Related]
16. An unsupervised dual contrastive learning framework for scatter correction in cone-beam CT image. Wang T; Liu X; Dai J; Zhang C; He W; Liu L; Chan Y; He Y; Zhao H; Xie Y; Liang X Comput Biol Med; 2023 Oct; 165():107377. PubMed ID: 37651766 [TBL] [Abstract][Full Text] [Related]
17. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT). Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275 [TBL] [Abstract][Full Text] [Related]
18. Development of CBCT-based prostate setup correction strategies and impact of rectal distension. Boydev C; Taleb-Ahmed A; Derraz F; Peyrodie L; Thiran JP; Pasquier D Radiat Oncol; 2015 Apr; 10():83. PubMed ID: 25890308 [TBL] [Abstract][Full Text] [Related]
19. Geometric discrepancy of image-guided radiation therapy in patients with prostate cancer without implanted fiducial markers using a commercial pseudo-CT generation method. Kan H; Eguchi Y; Tsuchiya T; Kondo T; Kitagawa Y; Mekata Y; Fukuma H; Yoshida R; Kasai H; Kunitomo H; Hirose Y; Shibamoto Y Phys Med Biol; 2019 Mar; 64(6):06NT01. PubMed ID: 30695772 [TBL] [Abstract][Full Text] [Related]