These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 22482623)
1. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Saito M Med Phys; 2012 Apr; 39(4):2021-30. PubMed ID: 22482623 [TBL] [Abstract][Full Text] [Related]
2. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: an anthropomorphic phantom study of radiotherapy treatment planning. Tsukihara M; Noto Y; Sasamoto R; Hayakawa T; Saito M Med Phys; 2015 Mar; 42(3):1378-88. PubMed ID: 25735292 [TBL] [Abstract][Full Text] [Related]
3. Conversion of the energy-subtracted CT number to electron density based on a single linear relationship: an experimental verification using a clinical dual-source CT scanner. Tsukihara M; Noto Y; Hayakawa T; Saito M Phys Med Biol; 2013 May; 58(9):N135-44. PubMed ID: 23571116 [TBL] [Abstract][Full Text] [Related]
4. Technical Note: exploring the limit for the conversion of energy-subtracted CT number to electron density for high-atomic-number materials. Saito M; Tsukihara M Med Phys; 2014 Jul; 41(7):071701. PubMed ID: 24989370 [TBL] [Abstract][Full Text] [Related]
5. Technical Note: Relation between dual-energy subtraction of CT images for electron density calibration and virtual monochromatic imaging. Saito M Med Phys; 2015 Jul; 42(7):4088-93. PubMed ID: 26133609 [TBL] [Abstract][Full Text] [Related]
6. Optimized low-kV spectrum of dual-energy CT equipped with high-kV tin filtration for electron density measurements. Saito M Med Phys; 2011 Jun; 38(6):2850-8. PubMed ID: 21815360 [TBL] [Abstract][Full Text] [Related]
7. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Krauss B; Grant KL; Schmidt BT; Flohr TG Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305 [TBL] [Abstract][Full Text] [Related]
8. Extracting atomic numbers and electron densities from a dual source dual energy CT scanner: experiments and a simulation model. Landry G; Reniers B; Granton PV; van Rooijen B; Beaulieu L; Wildberger JE; Verhaegen F Radiother Oncol; 2011 Sep; 100(3):375-9. PubMed ID: 21924780 [TBL] [Abstract][Full Text] [Related]
9. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations. Bazalova M; Carrier JF; Beaulieu L; Verhaegen F Phys Med Biol; 2008 May; 53(9):2439-56. PubMed ID: 18421124 [TBL] [Abstract][Full Text] [Related]
10. Simulation of photon-counting detectors for conversion of dual-energy-subtracted computed tomography number to electron density. Saito M Radiol Phys Technol; 2019 Mar; 12(1):105-117. PubMed ID: 30628027 [TBL] [Abstract][Full Text] [Related]
11. A simple formulation for deriving effective atomic numbers via electron density calibration from dual-energy CT data in the human body. Saito M; Sagara S Med Phys; 2017 Jun; 44(6):2293-2303. PubMed ID: 28236659 [TBL] [Abstract][Full Text] [Related]
12. Technical note: optimization for improved tube-loading efficiency in the dual-energy computed tomography coupled with balanced filter method. Saito M Med Phys; 2010 Aug; 37(8):4182-5. PubMed ID: 20879578 [TBL] [Abstract][Full Text] [Related]
13. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning. Wu V; Podgorsak MB; Tran TA; Malhotra HK; Wang IZ Med Phys; 2011 Jul; 38(7):4451-63. PubMed ID: 21859046 [TBL] [Abstract][Full Text] [Related]
14. Ion range estimation by using dual energy computed tomography. Hünemohr N; Krauss B; Dinkel J; Gillmann C; Ackermann B; Jäkel O; Greilich S Z Med Phys; 2013 Dec; 23(4):300-13. PubMed ID: 23597413 [TBL] [Abstract][Full Text] [Related]
15. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging. Michalak G; Grimes J; Fletcher J; Halaweish A; Yu L; Leng S; McCollough C Med Phys; 2016 Jan; 43(1):513. PubMed ID: 26745944 [TBL] [Abstract][Full Text] [Related]
16. Characteristics and clinical application of a treatment simulator with Ct-option. Verellen D; Vinh-Hung V; Bijdekerke P; Nijs F; Linthout N; Bel A; Storme G Radiother Oncol; 1999 Mar; 50(3):355-66. PubMed ID: 10392823 [TBL] [Abstract][Full Text] [Related]
17. Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method. Saito M Med Phys; 2009 Aug; 36(8):3631-42. PubMed ID: 19746797 [TBL] [Abstract][Full Text] [Related]
18. Dosimetric comparison of stopping power calibration with dual-energy CT and single-energy CT in proton therapy treatment planning. Zhu J; Penfold SN Med Phys; 2016 Jun; 43(6):2845-2854. PubMed ID: 27277033 [TBL] [Abstract][Full Text] [Related]
19. Quadratic relation for mass density calibration in human body using dual-energy CT data. Saito M Med Phys; 2021 Jun; 48(6):3065-3073. PubMed ID: 33905548 [TBL] [Abstract][Full Text] [Related]
20. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Primak AN; Ramirez Giraldo JC; Liu X; Yu L; McCollough CH Med Phys; 2009 Apr; 36(4):1359-69. PubMed ID: 19472643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]