These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 22482647)

  • 1. The use of a multiobjective evolutionary algorithm to increase flexibility in the search for better IMRT plans.
    Holdsworth C; Kim M; Liao J; Phillips M
    Med Phys; 2012 Apr; 39(4):2261-74. PubMed ID: 22482647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hierarchical evolutionary algorithm for multiobjective optimization in IMRT.
    Holdsworth C; Kim M; Liao J; Phillips MH
    Med Phys; 2010 Sep; 37(9):4986-97. PubMed ID: 20964218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of effective decision criteria for multiobjective optimization in IMRT.
    Holdsworth C; Stewart RD; Kim M; Liao J; Phillips MH
    Med Phys; 2011 Jun; 38(6):2964-74. PubMed ID: 21815370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.
    Fiege J; McCurdy B; Potrebko P; Champion H; Cull A
    Med Phys; 2011 Sep; 38(9):5217-29. PubMed ID: 21978066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach to multiobjective optimization of rotational therapy. II. Pareto optimal surfaces and linear combinations of modulated blocked arcs for a prostate geometry.
    Pardo-Montero J; Fenwick JD
    Med Phys; 2010 Jun; 37(6):2606-16. PubMed ID: 20632572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speed and convergence properties of gradient algorithms for optimization of IMRT.
    Zhang X; Liu H; Wang X; Dong L; Wu Q; Mohan R
    Med Phys; 2004 May; 31(5):1141-52. PubMed ID: 15191303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithm and performance of a clinical IMRT beam-angle optimization system.
    Djajaputra D; Wu Q; Wu Y; Mohan R
    Phys Med Biol; 2003 Oct; 48(19):3191-212. PubMed ID: 14579860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer.
    Smith WP; Kim M; Holdsworth C; Liao J; Phillips MH
    Radiat Oncol; 2016 Mar; 11():38. PubMed ID: 26968687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose sculpting with generalized equivalent uniform dose.
    Wu Q; Djajaputra D; Liu HH; Dong L; Mohan R; Wu Y
    Med Phys; 2005 May; 32(5):1387-96. PubMed ID: 15984690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy.
    Wang X; Zhang X; Dong L; Liu H; Wu Q; Mohan R
    Int J Radiat Oncol Biol Phys; 2004 Nov; 60(4):1325-37. PubMed ID: 15519806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans.
    Breedveld S; Storchi PR; Voet PW; Heijmen BJ
    Med Phys; 2012 Feb; 39(2):951-63. PubMed ID: 22320804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive IMRT using a multiobjective evolutionary algorithm integrated with a diffusion-invasion model of glioblastoma.
    Holdsworth CH; Corwin D; Stewart RD; Rockne R; Trister AD; Swanson KR; Phillips M
    Phys Med Biol; 2012 Dec; 57(24):8271-83. PubMed ID: 23190554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of IMRT beam complexity through the use of beam modulation penalties in the objective function.
    Matuszak MM; Larsen EW; Fraass BA
    Med Phys; 2007 Feb; 34(2):507-20. PubMed ID: 17388168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated IMRT planning with regional optimization using planning scripts.
    Xhaferllari I; Wong E; Bzdusek K; Lock M; Chen J
    J Appl Clin Med Phys; 2013 Jan; 14(1):4052. PubMed ID: 23318393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward truly optimal IMRT dose distribution: inverse planning with voxel-specific penalty.
    Lougovski P; LeNoach J; Zhu L; Ma Y; Censor Y; Xing L
    Technol Cancer Res Treat; 2010 Dec; 9(6):629-36. PubMed ID: 21070085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sensitivity-guided algorithm for automated determination of IMRT objective function parameters.
    Zhang X; Wang X; Dong L; Liu H; Mohan R
    Med Phys; 2006 Aug; 33(8):2935-44. PubMed ID: 16964872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose optimization with first-order total-variation minimization for dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT).
    Kim H; Li R; Lee R; Goldstein T; Boyd S; Candes E; Xing L
    Med Phys; 2012 Jul; 39(7):4316-27. PubMed ID: 22830765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting dose-volume histograms for organs-at-risk in IMRT planning.
    Appenzoller LM; Michalski JM; Thorstad WL; Mutic S; Moore KL
    Med Phys; 2012 Dec; 39(12):7446-61. PubMed ID: 23231294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained segment shapes in direct-aperture optimization for step-and-shoot IMRT.
    Bedford JL; Webb S
    Med Phys; 2006 Apr; 33(4):944-58. PubMed ID: 16696471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms.
    Lahanas M; Schreibmann E; Baltas D
    Phys Med Biol; 2003 Sep; 48(17):2843-71. PubMed ID: 14516105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.