These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22482928)

  • 21. Atomic-scale observation of rotational misorientation in suspended few-layer graphene sheets.
    Singh MK; Titus E; Gonçalves G; Marques PA; Bdikin I; Kholkin AL; Gracio JJ
    Nanoscale; 2010 May; 2(5):700-8. PubMed ID: 20648314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient field emission from triode-type 1D arrays of carbon nanotubes.
    Shiratori Y; Furuichi K; Tsuji Y; Sugime H; Noda S
    Nanotechnology; 2009 Nov; 20(47):475707. PubMed ID: 19875868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced field emission properties from CNT arrays synthesized on Inconel superalloy.
    Sridhar S; Ge L; Tiwary CS; Hart AC; Ozden S; Kalaga K; Lei S; Sridhar SV; Sinha RK; Harsh H; Kordas K; Ajayan PM; Vajtai R
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1986-91. PubMed ID: 24417432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical graphene nanocones over 3D platform of carbon fabrics: a route towards fully foldable graphene based electron source.
    Maiti UN; Maiti S; Das NS; Chattopadhyay KK
    Nanoscale; 2011 Oct; 3(10):4135-41. PubMed ID: 21850356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphology dependent field emission of acid-spun carbon nanotube fibers.
    Fairchild SB; Boeckl J; Back TC; Ferguson JB; Koerner H; Murray PT; Maruyama B; Lange MA; Cahay MM; Behabtu N; Young CC; Pasquali M; Lockwood NP; Averett KL; Gruen G; Tsentalovich DE
    Nanotechnology; 2015 Mar; 26(10):105706. PubMed ID: 25694166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible field emission from thermally welded chemically doped graphene thin films.
    Jeong HJ; Jeong HD; Kim HY; Kim SH; Kim JS; Jeong SY; Han JT; Lee GW
    Small; 2012 Jan; 8(2):272-80. PubMed ID: 22106027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High performance CNT point emitter with graphene interfacial layer.
    Lee JS; Kim T; Kim SG; Cho MR; Seo DK; Lee M; Kim S; Kim DW; Park GS; Jeong DH; Park YD; Yoo JB; Kang TJ; Kim YH
    Nanotechnology; 2014 Nov; 25(45):455601. PubMed ID: 25327181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth of carbon nanocoils from K and Ag cooperative bicatalyst assisted thermal decomposition of acetylene.
    Liu WC; Lin HK; Chen YL; Lee CY; Chiu HT
    ACS Nano; 2010 Jul; 4(7):4149-57. PubMed ID: 20527809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of carbon nanotube interlayer in enhancing the electron field emission behavior of ultrananocrystalline diamond coated Si-tip arrays.
    Chang TH; Kunuku S; Kurian J; Manekkathodi A; Chen LJ; Leou KC; Tai NH; Lin IN
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7732-40. PubMed ID: 25793425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanotube field electron emission: principles, development, and applications.
    Li Y; Sun Y; Yeow JT
    Nanotechnology; 2015 Jun; 26(24):242001. PubMed ID: 26020653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods.
    Shang N; Papakonstantinou P; Wang P; Zakharov A; Palnitkar U; Lin IN; Chu M; Stamboulis A
    ACS Nano; 2009 Apr; 3(4):1032-8. PubMed ID: 19344150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Field Emission of Multi-Walled Carbon Nanotubes from Pt-Assisted Chemical Vapor Deposition.
    Tang H; Liu R; Huang W; Zhu W; Qian W; Dong C
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition.
    Yang HS; Zhang L; Dong XH; Zhu WM; Zhu J; Nelson BJ; Zhang XB
    Nanotechnology; 2012 Feb; 23(6):065604. PubMed ID: 22248487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abrasion as a catalyst deposition technique for carbon nanotube growth.
    Alvarez NT; Pint CL; Hauge RH; Tour JM
    J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon Nanotube Field Emitters Synthesized on Metal Alloy Substrate by PECVD for Customized Compact Field Emission Devices to Be Used in X-Ray Source Applications.
    Park S; Gupta AP; Yeo SJ; Jung J; Paik SH; Mativenga M; Kim SH; Shin JH; Ahn JS; Ryu J
    Nanomaterials (Basel); 2018 May; 8(6):. PubMed ID: 29843456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.
    Agarwal S; Yamini Sarada B; Kar KK
    Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced field-emission behavior of layered MoS₂ sheets.
    Kashid RV; Late DJ; Chou SS; Huang YK; De M; Joag DS; More MA; Dravid VP
    Small; 2013 Aug; 9(16):2730-4. PubMed ID: 23427106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ZnO electron field emitters on three-dimensional patterned carbon nanotube framework.
    Li C; Li C; Di Y; Lei W; Chen J; Cui Y
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9194-8. PubMed ID: 23962088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.