These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22483034)

  • 21. Reaction of human myoglobin and H2O2. Electron transfer between tyrosine 103 phenoxyl radical and cysteine 110 yields a protein-thiyl radical.
    Witting PK; Mauk AG
    J Biol Chem; 2001 May; 276(19):16540-7. PubMed ID: 11278969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions of thiyl free radicals with oxygen: a pulse radiolysis study.
    Tamba M; Simone G; Quintiliani M
    Int J Radiat Biol Relat Stud Phys Chem Med; 1986 Oct; 50(4):595-600. PubMed ID: 3489683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSO., R., RSSR-., and RSS(.).
    Becker D; Swarts S; Champagne M; Sevilla MD
    Int J Radiat Biol Relat Stud Phys Chem Med; 1988 May; 53(5):767-86. PubMed ID: 2834300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of sulphur peptide functions in free radical transfer: a pulse radiolysis study.
    Prütz WA; Butler J; Land EJ; Swallow AJ
    Int J Radiat Biol; 1989 Apr; 55(4):539-56. PubMed ID: 2564865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Addition of e-aq and H atoms to hypoxanthine and inosine and the reactions of alpha-hydroxyalkyl radicals with purines. A pulse radiolysis and product analysis study.
    Aravindakumar CT; Mohan H; Mudaliar M; Rao BS; Mittal JP; Schuchmann MN; Von Sonntag C
    Int J Radiat Biol; 1994 Oct; 66(4):351-65. PubMed ID: 7930837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2-: EPR SPIN trapping studies.
    Zhang H; Xu Y; Joseph J; Kalyanaraman B
    J Biol Chem; 2005 Dec; 280(49):40684-98. PubMed ID: 16176930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit.
    Madej E; Folkes LK; Wardman P; Czapski G; Goldstein S
    Free Radic Biol Med; 2008 Jun; 44(12):2013-8. PubMed ID: 18381080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scavenging of nitrogen dioxide, thiyl, and sulfonyl free radicals by the nutritional antioxidant beta-carotene.
    Everett SA; Dennis MF; Patel KB; Maddix S; Kundu SC; Willson RL
    J Biol Chem; 1996 Feb; 271(8):3988-94. PubMed ID: 8626730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulse radiolysis of the DNA-binding bisbenzimidazole derivatives Hoechst 33258 and 33342 in aqueous solutions.
    Adhikary A; Bothe E; Jain V; Von Sonntag C
    Int J Radiat Biol; 2000 Sep; 76(9):1157-66. PubMed ID: 10993627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The roles of thiol-derived radicals in the use of 2',7'-dichlorodihydrofluorescein as a probe for oxidative stress.
    Wrona M; Patel KB; Wardman P
    Free Radic Biol Med; 2008 Jan; 44(1):56-62. PubMed ID: 18045547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiyl radicals and induction of protein degradation.
    Schöneich C
    Free Radic Res; 2016; 50(2):143-9. PubMed ID: 26212409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thiyl radical attack on polyunsaturated fatty acids: a possible route to lipid peroxidation.
    Schöneich C; Asmus KD; Dillinger U; von Bruchhausen F
    Biochem Biophys Res Commun; 1989 May; 161(1):113-20. PubMed ID: 2567162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The kinetics of thiyl radical-induced reactions of monounsaturated fatty acid esters.
    Chatgilialoglu C; Altieri A; Fischer H
    J Am Chem Soc; 2002 Oct; 124(43):12816-23. PubMed ID: 12392428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The oxidizing power of the glutathione thiyl radical as measured by its electrode potential at physiological pH.
    Madej E; Wardman P
    Arch Biochem Biophys; 2007 Jun; 462(1):94-102. PubMed ID: 17466930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CO2.- radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation.
    Favaudon V; Tourbez H; Houée-Levin C; Lhoste JM
    Biochemistry; 1990 Dec; 29(49):10978-89. PubMed ID: 2125498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reaction of thiyl radicals with alcohols, ethers and polyunsaturated fatty acids: a possible role of thiyl free radicals in thiol mutagenesis?
    Schöneich C; Asmus KD
    Radiat Environ Biophys; 1990; 29(4):263-71. PubMed ID: 2281133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron spin resonance and pulse radiolysis studies on the spin trapping of sulphur-centered radicals.
    Davies MJ; Forni LG; Shuter SL
    Chem Biol Interact; 1987 Feb; 61(2):177-88. PubMed ID: 3030572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thiyl radicals in biological systems: significant or trivial?
    Kalyanaraman B
    Biochem Soc Symp; 1995; 61():55-63. PubMed ID: 8660403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of reduction of tyrosine phenoxyl radicals by glutathione.
    Folkes LK; Trujillo M; Bartesaghi S; Radi R; Wardman P
    Arch Biochem Biophys; 2011 Feb; 506(2):242-9. PubMed ID: 21147061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the rate constant for the reaction of hydroxyl and oxide radicals with cysteine in aqueous solution.
    Mezyk SP
    Radiat Res; 1996 Jan; 145(1):102-6. PubMed ID: 8532829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.