These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 22483049)
1. Evaluation of the potential for sexual reproduction in field populations of Cercospora beticola from USA. Bolton MD; Secor GA; Rivera V; Weiland JJ; Rudolph K; Birla K; Rengifo J; Campbell LG Fungal Biol; 2012 Apr; 116(4):511-21. PubMed ID: 22483049 [TBL] [Abstract][Full Text] [Related]
2. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution. Bolton MD; de Jonge R; Inderbitzin P; Liu Z; Birla K; Van de Peer Y; Subbarao KV; Thomma BP; Secor GA Fungal Genet Biol; 2014 Jan; 62():43-54. PubMed ID: 24216224 [TBL] [Abstract][Full Text] [Related]
4. Characterization of CbCyp51 from field isolates of Cercospora beticola. Bolton MD; Birla K; Rivera-Varas V; Rudolph KD; Secor GA Phytopathology; 2012 Mar; 102(3):298-305. PubMed ID: 22085297 [TBL] [Abstract][Full Text] [Related]
5. Both mating types in the heterothallic fungus Ophiostoma quercus contain MAT1-1 and MAT1-2 genes. Wilken PM; Steenkamp ET; Hall TA; De Beer ZW; Wingfield MJ; Wingfield BD Fungal Biol; 2012 Mar; 116(3):427-37. PubMed ID: 22385624 [TBL] [Abstract][Full Text] [Related]
6. Mating type gene analysis in apparently asexual Cercospora species is suggestive of cryptic sex. Groenewald M; Groenewald JZ; Harrington TC; Abeln EC; Crous PW Fungal Genet Biol; 2006 Dec; 43(12):813-25. PubMed ID: 16839791 [TBL] [Abstract][Full Text] [Related]
7. Characterization and distribution of mating-type genes of the turfgrass pathogen Sclerotinia homoeocarpa on a global scale. Putman AI; Tredway LP; Carbone I Fungal Genet Biol; 2015 Aug; 81():25-40. PubMed ID: 26049125 [TBL] [Abstract][Full Text] [Related]
8. Identification of the G143A mutation associated with QoI resistance in Cercospora beticola field isolates from Michigan, United States. Bolton MD; Rivera V; Secor G Pest Manag Sci; 2013 Jan; 69(1):35-9. PubMed ID: 22761173 [TBL] [Abstract][Full Text] [Related]
9. Genetic structure of Cercospora beticola populations on Beta vulgaris in New York and Hawaii. Vaghefi N; Nelson SC; Kikkert JR; Pethybridge SJ Sci Rep; 2017 May; 7(1):1726. PubMed ID: 28496148 [TBL] [Abstract][Full Text] [Related]
10. BOTH MAT1-1 AND MAT1-2 MATING TYPES OF MYCOSPHAERELLA GRAMINICOLA OCCUR AT EQUAL FREQUENCIES IN ALGERIA. Allioui N; Siah A; Brinis L; Reignault P; Halama P Commun Agric Appl Biol Sci; 2014; 79(3):469-72. PubMed ID: 26080482 [TBL] [Abstract][Full Text] [Related]
11. Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Santos JM; Correia VG; Phillips AJ Fungal Biol; 2010; 114(2-3):255-70. PubMed ID: 20943136 [TBL] [Abstract][Full Text] [Related]
12. Mating System in the Brown Rot Pathogens Monilinia fructicola, M. laxa, and M. fructigena. Abate D; De Miccolis Angelini RM; Rotolo C; Pollastro S; Faretra F Phytopathology; 2018 Nov; 108(11):1315-1325. PubMed ID: 29767553 [TBL] [Abstract][Full Text] [Related]
13. Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. Gurung S; Goodwin SB; Kabbage M; Bockus WW; Adhikari TB Phytopathology; 2011 Oct; 101(10):1251-9. PubMed ID: 21692645 [TBL] [Abstract][Full Text] [Related]
14. Significant difference in pathogenicity between MAT1-1 and MAT1-2 isolates in the wheat pathogen Mycosphaerella graminicola. Zhan J; Torriani SF; McDonald BA Fungal Genet Biol; 2007 May; 44(5):339-46. PubMed ID: 17157539 [TBL] [Abstract][Full Text] [Related]
15. Temporal Genetic Differentiation of Cercospora beticola Populations in New York Table Beet Fields. Knight NL; Vaghefi N; Hansen ZR; Kikkert JR; Pethybridge SJ Plant Dis; 2018 Nov; 102(11):2074-2082. PubMed ID: 30156961 [TBL] [Abstract][Full Text] [Related]
16. Morphological and molecular characterization, sexual reproduction, and pathogenicity of Setosphaeria rostrata isolates from rice leaf spot. Kusai NA; Azmi MM; Zainudin NA; Yusof MT; Razak AA Mycologia; 2016 Sep; 108(5):905-914. PubMed ID: 27474518 [TBL] [Abstract][Full Text] [Related]
17. Mating-Type Gene Structure and Spatial Distribution of Didymella tanaceti in Pyrethrum Fields. Pearce TL; Scott JB; Hay FS; Pethybridge SJ Phytopathology; 2016 Dec; 106(12):1521-1529. PubMed ID: 27398744 [TBL] [Abstract][Full Text] [Related]
18. Genetic diversification of the chestnut blight fungus Cryphonectria parasitica and its associated hypovirus in Germany. Peters FS; Busskamp J; Prospero S; Rigling D; Metzler B Fungal Biol; 2014 Feb; 118(2):193-210. PubMed ID: 24528641 [TBL] [Abstract][Full Text] [Related]
19. Cercospora zeina from Maize in South Africa Exhibits High Genetic Diversity and Lack of Regional Population Differentiation. Muller MF; Barnes I; Kunene NT; Crampton BG; Bluhm BH; Phillips SM; Olivier NA; Berger DK Phytopathology; 2016 Oct; 106(10):1194-1205. PubMed ID: 27392176 [TBL] [Abstract][Full Text] [Related]
20. Cryptic diversity, pathogenicity, and evolutionary species boundaries in Cercospora populations associated with Cercospora leaf spot of Beta vulgaris. Vaghefi N; Kikkert JR; Hay FS; Carver GD; Koenick LB; Bolton MD; Hanson LE; Secor GA; Pethybridge SJ Fungal Biol; 2018 Apr; 122(4):264-282. PubMed ID: 29551200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]