These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22483073)

  • 1. Measures of frontal functioning and the emergence of inhibitory control processes at 10 months of age.
    Cuevas K; Swingler MM; Bell MA; Marcovitch S; Calkins SD
    Dev Cogn Neurosci; 2012 Apr; 2(2):235-43. PubMed ID: 22483073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in brain functioning from infancy to early childhood: evidence from EEG power and coherence working memory tasks.
    Bell MA; Wolfe CD
    Dev Neuropsychol; 2007; 31(1):21-38. PubMed ID: 17305436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG and ECG from 5 to 10 months of age: developmental changes in baseline activation and cognitive processing during a working memory task.
    Cuevas K; Bell MA
    Int J Psychophysiol; 2011 May; 80(2):119-28. PubMed ID: 21338632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in frontal EEG coherence across infancy predict cognitive abilities at age 3: The mediating role of attentional control.
    Whedon M; Perry NB; Calkins SD; Bell MA
    Dev Psychol; 2016 Sep; 52(9):1341-52. PubMed ID: 27441486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semantic future thinking and executive functions at age 4: The moderating role of frontal brain electrical activity.
    Blankenship TL; Broomell APR; Ann Bell M
    Dev Psychobiol; 2018 Jul; 60(5):608-614. PubMed ID: 29785731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroencephalogram and heart rate measures of working memory at 5 and 10 months of age.
    Cuevas K; Bell MA; Marcovitch S; Calkins SD
    Dev Psychol; 2012 Jul; 48(4):907-17. PubMed ID: 22148943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-trial theta band activity in the ventromedial prefrontal cortex correlates with inhibition-related theta band activity in the right inferior frontal cortex.
    Adelhöfer N; Beste C
    Neuroimage; 2020 Oct; 219():117052. PubMed ID: 32540357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental progression of looking and reaching performance on the A-not-B task.
    Cuevas K; Bell MA
    Dev Psychol; 2010 Sep; 46(5):1363-71. PubMed ID: 20822245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation of Medial Frontal β-Bursts and Executive Control.
    Errington SP; Woodman GF; Schall JD
    J Neurosci; 2020 Nov; 40(48):9272-9282. PubMed ID: 33097634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A developmental examination of medial frontal theta dynamics and inhibitory control.
    van Noordt S; Heffer T; Willoughby T
    Neuroimage; 2022 Feb; 246():118765. PubMed ID: 34875380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional connectivity and infant spatial working memory: a frequency band analysis.
    Cuevas K; Raj V; Bell MA
    Psychophysiology; 2012 Feb; 49(2):271-80. PubMed ID: 22092263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the early development of visual working memory capacity with functional near-infrared spectroscopy.
    Buss AT; Fox N; Boas DA; Spencer JP
    Neuroimage; 2014 Jan; 85 Pt 1(0 1):314-25. PubMed ID: 23707803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual differences in inhibitory control skills at three years of age.
    Watson AJ; Bell MA
    Dev Neuropsychol; 2013; 38(1):1-21. PubMed ID: 23311312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontal-posterior theta oscillations reflect memory retrieval during sentence comprehension.
    Meyer L; Grigutsch M; Schmuck N; Gaston P; Friederici AD
    Cortex; 2015 Oct; 71():205-18. PubMed ID: 26233521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Working memory and inhibitory control in early childhood: Contributions from physiology, temperament, and language.
    Wolfe CD; Bell MA
    Dev Psychobiol; 2004 Jan; 44(1):68-83. PubMed ID: 14704991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relations between frontal brain electrical activity and cognitive development during infancy.
    Bell MA; Fox NA
    Child Dev; 1992 Oct; 63(5):1142-63. PubMed ID: 1446545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on EEG power and coherence in patients with mild cognitive impairment during working memory task.
    Jiang ZY
    J Zhejiang Univ Sci B; 2005 Dec; 6(12):1213-9. PubMed ID: 16358382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. To Stroop or not to Stroop: Sex-related differences in brain-behavior associations during early childhood.
    Cuevas K; Calkins SD; Bell MA
    Psychophysiology; 2016 Jan; 53(1):30-40. PubMed ID: 26681615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greater childhood cardiorespiratory fitness is associated with better top-down cognitive control: A midfrontal theta oscillation study.
    Hsieh SS; Chueh TY; Morris TP; Kao SC; Westfall DR; Raine LB; Hopman RJ; Pontifex MB; Castelli DM; Kramer AF; Hillman CH
    Psychophysiology; 2020 Dec; 57(12):e13678. PubMed ID: 32877574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontal midline theta differentiates separate cognitive control strategies while still generalizing the need for cognitive control.
    Eisma J; Rawls E; Long S; Mach R; Lamm C
    Sci Rep; 2021 Jul; 11(1):14641. PubMed ID: 34282209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.